answersLogoWhite

0

The numerical value for the gravitational acceleration on the surface of Earth is approximately 9.81 m/s^2.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Physics

Are inertial and gravitational acceleration equal?

No, inertial and gravitational acceleration are not equal. Inertial acceleration is caused by changes in velocity due to forces acting on an object, while gravitational acceleration is caused by the force of gravity on an object due to its mass.


What is the relationship between static acceleration and an object's position in a gravitational field?

The relationship between static acceleration and an object's position in a gravitational field is that the static acceleration of an object in a gravitational field is constant and does not change with the object's position. This means that the object will experience the same acceleration due to gravity regardless of where it is located within the gravitational field.


A hammer is dropped on Planet X. If the hammer has a mass of 3 kg and a weight of 9N what is the gravitational acceleration of Planet X Is it more or less than that of Earth?

The gravitational acceleration of Planet X can be calculated using the formula weight = mass x gravitational acceleration. In this case, on Planet X, gravitational acceleration is 3 m/s^2, which is less than Earth's gravitational acceleration of 9.8 m/s^2.


What is ratio of inertia of mass to given mass is?

This is called the Equivalence Principle. There are many formulas to go with it. But it is basically this: A little reflection will show that the law of the equality of the inertial and gravitational mass is equivalent to the assertion that the acceleration imparted to a body by a gravitational field is independent of the nature of the body. For Newton's equation of motion in a gravitational field, written out in full, it is: (Inertial mass) (Acceleration) = (Intensity of the gravitational field) (Gravitational mass). It is only when there is numerical equality between the inertial and gravitational mass that the acceleration is independent of the nature of the body. -Albert Einstein


How can pendulum be used to determine local gravitational acceleration?

A pendulum's period is affected by the local gravitational acceleration. By measuring the time it takes for the pendulum to complete one full swing, the gravitational acceleration can be calculated using the formula g = 4π²L/T², where g is the acceleration due to gravity, L is the length of the pendulum, and T is the period of the pendulum's swing. By rearranging this formula, the local gravitational acceleration can be determined.

Related Questions

What is the difference between gravitational acceleration and acceleration?

Gravitational acceleration is simply acceleration due to gravity.


Is gravitational pull the same as gravitational acceleration?

No. "Pull" is a force, not an acceleration.


Are inertial and gravitational acceleration equal?

No, inertial and gravitational acceleration are not equal. Inertial acceleration is caused by changes in velocity due to forces acting on an object, while gravitational acceleration is caused by the force of gravity on an object due to its mass.


When acceleration upward or downward direction is taken positivw or negative?

If it is gravitational acceleration then it it is positive in downward and negative in upward direction..if it is not gravitational acceleration then it is depending upon the value of acceleration.


Magnitude of gravitational acceleration on mercury?

Mercury's acceleration of gravity in m/s^2 is 3.59


Can you calculate gravitational acceleration witn only having the time and the mass of the object?

Gravitational acceleration is always g = 9.8


Can gravitational acceleration be reduced artificially?

No. Gravitational Acceleration is a constant and is a function of mass. The effects of the constant upon another mass can be altered but the acceleration itself will remain the same.


What is acceleration deu to gravity"g"?

Acceleration due to gravity "g" is produced by a gravitational force. This can be understood through Newton's law of gravitation: Law of Gravitation: F = (G * m1 * m2) / r^2 where, F is the gravitational force, G is the gravitational contraction number (used in the gravitational formula), m1 and m2 are the masses of two objects, r is the distance between two objects. It follows from this formula that the force of gravity is universal in relation to the velocity and distance between the two objects. "g" here stands for gravitational contraction number or gravitational contraction number of gravitational space (gravitational constant). Because its value is very small, the effect of gravity on the gravitational force is not very strong. It is resorted to by humans at almost all lengths and times. Acceleration of an object with the Earth by gravity "g" is a quantity of energy, which is very small in a single month's mass in a single time. It is important to note that "g" deals with the acceleration of the object relative to Earth, and does not focus on the overall acceleration.


What is the relationship between static acceleration and an object's position in a gravitational field?

The relationship between static acceleration and an object's position in a gravitational field is that the static acceleration of an object in a gravitational field is constant and does not change with the object's position. This means that the object will experience the same acceleration due to gravity regardless of where it is located within the gravitational field.


A hammer is dropped on Planet X. If the hammer has a mass of 3 kg and a weight of 9N what is the gravitational acceleration of Planet X Is it more or less than that of Earth?

The gravitational acceleration of Planet X can be calculated using the formula weight = mass x gravitational acceleration. In this case, on Planet X, gravitational acceleration is 3 m/s^2, which is less than Earth's gravitational acceleration of 9.8 m/s^2.


What is ratio of inertia of mass to given mass is?

This is called the Equivalence Principle. There are many formulas to go with it. But it is basically this: A little reflection will show that the law of the equality of the inertial and gravitational mass is equivalent to the assertion that the acceleration imparted to a body by a gravitational field is independent of the nature of the body. For Newton's equation of motion in a gravitational field, written out in full, it is: (Inertial mass) (Acceleration) = (Intensity of the gravitational field) (Gravitational mass). It is only when there is numerical equality between the inertial and gravitational mass that the acceleration is independent of the nature of the body. -Albert Einstein


What is the relation connecting acceleration and gravitational force?

The same as the relation between acceleration and any other force. Force = (mass) x (acceleration) If the force happens to be gravitational, then the acceleration is down, and the formula tells you the size of the acceleration. If the acceleration is down and there are no rocket engines strapped to the object, then it's a pretty safe bet that the force is gravitational, and the formula tells you the size of the force.