Gravity is forcing an object to fall to the ground. Another force is friction from air pressure on the falling object.
The net force acting on a 1-kg freely falling object is equal to its weight, which is the force of gravity pulling it downward. This force is approximately 9.8 newtons (N) on Earth.
Yes, an object freely falling still has mass. Mass is a measure of the amount of matter in an object, and it remains constant regardless of the object's motion. The force of gravity acting on the object is what causes it to fall.
A freely falling projectile is an object that is only acted upon by gravity, moving through the air in a parabolic path while falling towards the ground. It does not have any initial horizontal force or acceleration other than gravity acting upon it.
An object falling freely under gravity is known as a free-falling object, where gravity is the only force acting on it. In the absence of other forces like air resistance, the object accelerates at a constant rate of 9.8 m/s^2 (approximately) towards the Earth's surface.
The force acting on a falling object is the gravitational force, which pulls the object towards the center of the Earth. This force causes the object to accelerate downwards, leading to its motion. The magnitude of this force is determined by the mass of the object and the acceleration due to gravity.
The net force acting on a 1-kg freely falling object is equal to its weight, which is the force of gravity pulling it downward. This force is approximately 9.8 newtons (N) on Earth.
Yes, an object freely falling still has mass. Mass is a measure of the amount of matter in an object, and it remains constant regardless of the object's motion. The force of gravity acting on the object is what causes it to fall.
Yes. The definition of "free fall" implies that gravity from Earth - or perhaps from different objects - is acting on the body.
Gravity.
A freely falling projectile is an object that is only acted upon by gravity, moving through the air in a parabolic path while falling towards the ground. It does not have any initial horizontal force or acceleration other than gravity acting upon it.
An object falling freely under gravity is known as a free-falling object, where gravity is the only force acting on it. In the absence of other forces like air resistance, the object accelerates at a constant rate of 9.8 m/s^2 (approximately) towards the Earth's surface.
The force acting on a falling object is the gravitational force, which pulls the object towards the center of the Earth. This force causes the object to accelerate downwards, leading to its motion. The magnitude of this force is determined by the mass of the object and the acceleration due to gravity.
In free fall.
When a body is falling freely, the only force acting on it is gravity. This force causes the body to accelerate downwards at a rate of 9.81 m/s^2 near the surface of the Earth.
No, Newton's third law states that for every action there is an equal and opposite reaction. In the case of a freely falling body, gravity is the dominant force acting on the body, causing it to accelerate downward. This is described by Newton's second law, which states that the force acting on an object is equal to its mass times its acceleration.
True (:
air resistance.