multiply *2 of the previous period
When the length of a simple pendulum is doubled, the frequency of the pendulum decreases by a factor of √2. This relationship is described by the formula T = 2π√(L/g), where T is the period of the pendulum, L is the length, and g is the acceleration due to gravity.
The PERIOD of a Simple Pendulum is affected by its LENGTH, and NOT by its Mass or the amplitude of its swing. So, in your case, the Period of the Pendulum's swing would remain UNCHANGED!
The period of a pendulum is directly proportional to the square root of its length. As the length of a pendulum increases, its period increases. Conversely, if the length of a pendulum decreases, its period decreases.
When the length of a pendulum is increased, by any amount, its Time Period increases. i.e. it moves more slowly. Conversely, if the length is decreased, by any amount, its Time Period decreases. i.e. it moves faster.
If the length of a pendulum is increased, the period of the pendulum also increases. This relationship is described by the equation for the period of a pendulum, which is directly proportional to the square root of the length of the pendulum. This means that as the length increases, the period also increases.
The period increases - by a factor of sqrt(2).
time period of simple pendulum is dirctly proportional to sqare root of length...
When the length of a simple pendulum is doubled, the frequency of the pendulum decreases by a factor of √2. This relationship is described by the formula T = 2π√(L/g), where T is the period of the pendulum, L is the length, and g is the acceleration due to gravity.
ts period will become sqrt(2) times as long.
The PERIOD of a Simple Pendulum is affected by its LENGTH, and NOT by its Mass or the amplitude of its swing. So, in your case, the Period of the Pendulum's swing would remain UNCHANGED!
The period of a pendulum is directly proportional to the square root of its length. As the length of a pendulum increases, its period increases. Conversely, if the length of a pendulum decreases, its period decreases.
When the length of a pendulum is increased, by any amount, its Time Period increases. i.e. it moves more slowly. Conversely, if the length is decreased, by any amount, its Time Period decreases. i.e. it moves faster.
If the length of a pendulum is increased, the period of the pendulum also increases. This relationship is described by the equation for the period of a pendulum, which is directly proportional to the square root of the length of the pendulum. This means that as the length increases, the period also increases.
The period of a pendulum is independent of its length. The period is determined by the acceleration due to gravity and the length of the pendulum does not affect this relationship. However, the period of a pendulum may change if the amplitude of the swing is very wide.
A longer pendulum has a longer period.
pendulum length (L)=1.8081061073513foot pendulum length (L)=0.55111074152067meter
multiply the length of the pendulum by 4, the period doubles. the period is proportional to the square of the pendulum length.