answersLogoWhite

0

The electrical field E = - dV/dr, the derivative of the electrical potential, V.

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Physics

What is the difference between electrical potential energy and electric potential, and how can we clearly distinguish between the two concepts?

Electrical potential energy is the energy stored in an electric field due to the position of charged particles, while electric potential is the amount of potential energy per unit charge at a specific point in the field. To distinguish between the two concepts, remember that electrical potential energy is a measure of the total energy stored in the field, while electric potential is a measure of the energy per unit charge at a specific location.


Why electric field is zero when electrical potential is constant?

When the electric field is zero, it means there is no change in electrical potential across the field. In other words, the equipotential surfaces are parallel, indicating a constant electrical potential. This relationship arises from the fact that the electric field is the negative gradient of the electrical potential.


What is the difference between electrical potential energy and electric potential?

Electrical potential energy is the energy stored in an electric field due to the position of charged particles, while electric potential is the amount of electric potential energy per unit charge at a specific point in an electric field.


What is the difference between electrical potential and electromotive force?

Electrical potential refers to the electric potential energy per unit charge at a point in an electric field, measured in volts. Electromotive force (emf) is the energy per unit charge supplied by a source of electrical energy, such as a battery, to drive current through a circuit, also measured in volts. Essentially, electrical potential is a property of a point in the field, while emf is the force that drives the flow of charge.


The potential is constant through a given region of space Is the electrical field zero or non zero?

If the potential is constant through a given region of space, the electric field is zero in that region. This is because the electric field is the negative gradient of the electric potential, so if the potential is not changing, the field becomes zero.

Related Questions

What is the difference in electrical potential energy between two places in an electrical field?

voltage


What is the difference between electrical potential energy and electric potential, and how can we clearly distinguish between the two concepts?

Electrical potential energy is the energy stored in an electric field due to the position of charged particles, while electric potential is the amount of potential energy per unit charge at a specific point in the field. To distinguish between the two concepts, remember that electrical potential energy is a measure of the total energy stored in the field, while electric potential is a measure of the energy per unit charge at a specific location.


Why electric field is zero when electrical potential is constant?

When the electric field is zero, it means there is no change in electrical potential across the field. In other words, the equipotential surfaces are parallel, indicating a constant electrical potential. This relationship arises from the fact that the electric field is the negative gradient of the electrical potential.


What is the difference between electrical potential energy and electric potential?

Electrical potential energy is the energy stored in an electric field due to the position of charged particles, while electric potential is the amount of electric potential energy per unit charge at a specific point in an electric field.


What is the difference between electrical potential and electromotive force?

Electrical potential refers to the electric potential energy per unit charge at a point in an electric field, measured in volts. Electromotive force (emf) is the energy per unit charge supplied by a source of electrical energy, such as a battery, to drive current through a circuit, also measured in volts. Essentially, electrical potential is a property of a point in the field, while emf is the force that drives the flow of charge.


The potential is constant through a given region of space Is the electrical field zero or non zero?

If the potential is constant through a given region of space, the electric field is zero in that region. This is because the electric field is the negative gradient of the electric potential, so if the potential is not changing, the field becomes zero.


What is the difference between electrical potential energy and electric potential, and how do they relate to each other in the context of electric fields?

Electrical potential energy is the energy stored in a system of charges due to their positions and interactions, while electric potential is the amount of potential energy per unit charge at a specific point in an electric field. In the context of electric fields, electric potential is a measure of the work needed to move a unit positive charge from a reference point to a specific point in the field, while electrical potential energy is the total energy stored in the system of charges. The relationship between them is that electric potential is related to electrical potential energy through the equation: electric potential energy charge x electric potential.


What explain how electrical charges flow?

Electrical charges flow when there is a potential difference between two points in a conductor, creating an electric field. This field exerts a force on the charges, causing them to move through the conductor. The flow of electrical charges is known as an electric current.


What is the relationship between voltage and electric field in a given electrical system?

In a given electrical system, the relationship between voltage and electric field is that voltage is the measure of electric potential difference between two points in the system, while electric field is the force per unit charge experienced by a charge at a point in the system. The electric field is directly proportional to the voltage in the system.


What is the force that causes electrons to move in an electrical circuit?

The force that causes electrons to move in an electrical circuit is called voltage. Voltage is the difference in electric potential between two points in a circuit, which creates an electric field that pushes the electrons to flow from the higher potential to the lower potential.


How are gravitational field and an electrical field similar?

The electrical field force acts between two charges, in the same way that the gravitational field force acts between two masses.


What is the relationship between electric potential and electric potential energy, and how do they differ in the context of electrical systems?

Electric potential is the amount of electric potential energy per unit charge at a point in an electric field. Electric potential energy is the energy stored in an electric field due to the position of charged particles. In electrical systems, electric potential is a scalar quantity that represents the potential energy per unit charge at a point, while electric potential energy is the total energy stored in the system due to the arrangement of charges. The relationship between them is that electric potential energy is directly proportional to electric potential and charge.