answersLogoWhite

0

There is no direct relationship between the two. Newton's Second Law, though, tells you how the VELOCITY of an object will change when a force is applied. The law - as it is usually quoted - says:F = ma

Solving for acceleration:

a = F/m

So, the acceleration of an object will depend on the force. If you integrate this equation twice, you get the displacement - but the integration will also give you two arbitrary integration constants, meaning that you need to know the initial conditions (initial position, and initial velocity).

User Avatar

Wiki User

9y ago

What else can I help you with?

Continue Learning about Physics

What is the relationship between velocity, time, and displacement when acceleration is constant?

When acceleration is constant, the relationship between velocity, time, and displacement can be described by the equations of motion. The velocity of an object changes linearly with time when acceleration is constant. The displacement of the object is directly proportional to the square of the time elapsed.


What is the relationship between displacement, velocity, and time in the context of physics?

In physics, displacement is the change in position of an object, velocity is the rate of change of displacement over time, and time is the duration of the motion. The relationship between displacement, velocity, and time is described by the equation: displacement velocity x time. This equation shows how the distance an object travels (displacement) is related to how fast it is moving (velocity) and how long it has been moving (time).


What is the relationship between displacement and the derivative of displacement in the context of physics?

In physics, displacement is the change in position of an object. The derivative of displacement is velocity, which represents the rate of change of displacement with respect to time. So, the relationship between displacement and its derivative (velocity) is that velocity tells us how fast the object's position is changing at any given moment.


What is relation between displacement and time?

Displacement is the change in position of an object relative to a reference point. The relationship between displacement and time can be described by the object's velocity, which is the rate of change of displacement with respect to time. In a simplified case of constant velocity, displacement is directly proportional to time.


What is the relationship between the position and displacement of an object in physics?

In physics, the position of an object refers to its location in space at a specific point in time, while displacement is the change in position of the object from its initial to final location. Displacement is a vector quantity that includes both the magnitude and direction of the change in position. The relationship between position and displacement is that displacement is a measure of how far and in what direction an object has moved from its starting point.

Related Questions

What is the relationship between velocity, time, and displacement when acceleration is constant?

When acceleration is constant, the relationship between velocity, time, and displacement can be described by the equations of motion. The velocity of an object changes linearly with time when acceleration is constant. The displacement of the object is directly proportional to the square of the time elapsed.


What is the relationship between displacement, velocity, and time in the context of physics?

In physics, displacement is the change in position of an object, velocity is the rate of change of displacement over time, and time is the duration of the motion. The relationship between displacement, velocity, and time is described by the equation: displacement velocity x time. This equation shows how the distance an object travels (displacement) is related to how fast it is moving (velocity) and how long it has been moving (time).


What is the relationship between displacement and the derivative of displacement in the context of physics?

In physics, displacement is the change in position of an object. The derivative of displacement is velocity, which represents the rate of change of displacement with respect to time. So, the relationship between displacement and its derivative (velocity) is that velocity tells us how fast the object's position is changing at any given moment.


What is relation between displacement and time?

Displacement is the change in position of an object relative to a reference point. The relationship between displacement and time can be described by the object's velocity, which is the rate of change of displacement with respect to time. In a simplified case of constant velocity, displacement is directly proportional to time.


What is the relationship between displacement and direction?

Displacement is just distance traveled and a direction. For example 40m east is a displacement distance


What is the relationship between the position and displacement of an object in physics?

In physics, the position of an object refers to its location in space at a specific point in time, while displacement is the change in position of the object from its initial to final location. Displacement is a vector quantity that includes both the magnitude and direction of the change in position. The relationship between position and displacement is that displacement is a measure of how far and in what direction an object has moved from its starting point.


What is the relationship between the weight of a viking boat and the water displacement?

the more weight, the more water displacement.


What is the relationship between displacement and velocity?

Displacement is the change in position of an object in a particular direction, whereas velocity is the rate at which an object changes its position. Velocity is the derivative of displacement with respect to time. In other words, velocity tells us how fast an object's position is changing over time.


What is relation between displacement and time in projectile motion?

displacement is indirectionly propotional to time .


What is the relationship between vertical displacement and theoretical time of flight?

The vertical displacement of a projectile is directly related to the theoretical time of flight. The higher the vertical displacement, the longer the projectile will stay in the air before landing. This is because the time of flight is influenced by the initial vertical velocity and acceleration due to gravity acting on the projectile.


What is the relationship between sound wave pressure antinodes and displacement?

In sound waves, pressure antinodes are points of maximum pressure fluctuation, while displacement refers to the distance a particle moves from its resting position. The relationship between them is that pressure antinodes correspond to points of maximum displacement in a sound wave.


Does a doubling of an object's average speed always double the magnitude of its displacement in a given amount of time?

No, doubling an object's average speed does not always double the magnitude of its displacement. Displacement depends on both speed and direction. If the object changes direction or follows a curved path, the relationship between speed and displacement may not be linear.