answersLogoWhite

0

Speed is a measure of motion and velocity just includes what direction it happens in.
Acceleration is a measure of changes in speed.

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Physics

What is the relationship between centripetal acceleration and angular velocity in circular motion?

In circular motion, centripetal acceleration is directly proportional to angular velocity. This means that as the angular velocity increases, the centripetal acceleration also increases.


What methods can be used to determine the relationship between velocity and acceleration in a given system?

One method to determine the relationship between velocity and acceleration in a system is to analyze the system's motion using calculus. By taking the derivative of the velocity function, you can find the acceleration function, which shows how velocity changes over time. This allows you to understand the relationship between velocity and acceleration in the system.


What is the relationship between displacement, velocity, and acceleration in the context of motion?

Displacement is the change in position of an object, velocity is the rate of change of displacement, and acceleration is the rate of change of velocity. In the context of motion, displacement, velocity, and acceleration are related in that acceleration affects velocity, which in turn affects displacement.


How does the relationship between velocity and acceleration impact the motion of an object?

The relationship between velocity and acceleration affects how an object moves. When acceleration is positive, velocity increases, causing the object to speed up. When acceleration is negative, velocity decreases, causing the object to slow down. If acceleration is zero, velocity remains constant, and the object moves at a steady speed.


What is the relationship between velocity, time, and displacement when acceleration is constant?

When acceleration is constant, the relationship between velocity, time, and displacement can be described by the equations of motion. The velocity of an object changes linearly with time when acceleration is constant. The displacement of the object is directly proportional to the square of the time elapsed.

Related Questions

What is the relationship between centripetal acceleration and angular velocity in circular motion?

In circular motion, centripetal acceleration is directly proportional to angular velocity. This means that as the angular velocity increases, the centripetal acceleration also increases.


What methods can be used to determine the relationship between velocity and acceleration in a given system?

One method to determine the relationship between velocity and acceleration in a system is to analyze the system's motion using calculus. By taking the derivative of the velocity function, you can find the acceleration function, which shows how velocity changes over time. This allows you to understand the relationship between velocity and acceleration in the system.


What is the relationship between displacement, velocity, and acceleration in the context of motion?

Displacement is the change in position of an object, velocity is the rate of change of displacement, and acceleration is the rate of change of velocity. In the context of motion, displacement, velocity, and acceleration are related in that acceleration affects velocity, which in turn affects displacement.


How does the relationship between velocity and acceleration impact the motion of an object?

The relationship between velocity and acceleration affects how an object moves. When acceleration is positive, velocity increases, causing the object to speed up. When acceleration is negative, velocity decreases, causing the object to slow down. If acceleration is zero, velocity remains constant, and the object moves at a steady speed.


What is the relationship between velocity, time, and displacement when acceleration is constant?

When acceleration is constant, the relationship between velocity, time, and displacement can be described by the equations of motion. The velocity of an object changes linearly with time when acceleration is constant. The displacement of the object is directly proportional to the square of the time elapsed.


What is the relationship between linear and angular acceleration in rotational motion?

In rotational motion, linear acceleration and angular acceleration are related. Linear acceleration is the rate of change of linear velocity, while angular acceleration is the rate of change of angular velocity. The relationship between the two is that linear acceleration and angular acceleration are directly proportional to each other, meaning that an increase in angular acceleration will result in a corresponding increase in linear acceleration.


What is the relationship between acceleration, initial velocity, final velocity, displacement, and time in a given motion, as described by the suvat equations?

The relationship between acceleration, initial velocity, final velocity, displacement, and time in a given motion is described by the suvat equations. These equations show how these variables are related and can be used to calculate one variable if the others are known. The equations are used in physics to analyze and predict the motion of objects.


What is the relationship between acceleration and velocity?

Acceleration is the rate at which an object's velocity changes over time. In other words, acceleration measures how quickly an object's speed or direction is changing. Velocity, on the other hand, is the speed and direction of an object's motion. So, acceleration and velocity are related in that acceleration affects the change in velocity of an object.


What is dimension of second equation of motion?

The second equation of motion describes the relationship between an object's final velocity and initial velocity, acceleration, and displacement. It is typically written as v^2 = u^2 + 2as, where v is final velocity, u is initial velocity, a is acceleration, and s is displacement. The dimensions of the second equation of motion are [L/T] for velocity, [L/T] for acceleration, and [L] for displacement.


What is the relationship between torque and velocity?

Torque is the rotational force applied to an object, while velocity is the speed at which the object is moving. In rotational motion, torque affects the angular acceleration of an object, which in turn can impact its angular velocity. The relationship between torque and velocity is described by the equation: Torque = Moment of inertia x Angular acceleration.


What is the relationship between angular acceleration and centripetal acceleration in rotational motion?

In rotational motion, angular acceleration and centripetal acceleration are related. Angular acceleration is the rate at which an object's angular velocity changes, while centripetal acceleration is the acceleration directed towards the center of rotation. In rotational motion, centripetal acceleration is caused by angular acceleration, as the change in angular velocity results in a change in direction, causing the object to accelerate towards the center of rotation.


What is the relationship between radial and tangential acceleration in circular motion?

In circular motion, radial acceleration is perpendicular to the velocity and points towards the center of the circle, while tangential acceleration is parallel to the velocity and changes the speed of the object. The two accelerations are independent of each other and can act simultaneously in different directions.