it means when you are playing and your arm resists
A is a lever, a type of simple machine. The fulcrum is the point where the lever pivots, the effort arm is where the input force is applied, and the resistance arm is where the output force is found. Levers are used to amplify the input force to overcome a resistance.
The mechanical advantage of a lever is calculated by dividing the length of the effort arm by the length of the resistance arm. In this case, the MA would be 5 (100cm/20cm).
The resistance arm of a lever is the distance between the fulcrum (pivot point) and the point where the resistance force is applied. It determines the amount of force required to move the resistance, with a longer resistance arm requiring less force to overcome a given resistance.
The mechanical advantage of a lever is calculated by dividing the length of the lever arm on the effort side by the length of the lever arm on the resistance side. The formula for mechanical advantage is MA = Length of effort arm / Length of resistance arm. It represents the factor by which a lever multiplies the force applied to it.
The mechanical advantage of a lever is calculated by dividing the length of the effort arm by the length of the resistance arm. In this case, the mechanical advantage would be 16cm (effort arm) divided by 2cm (resistance arm), resulting in a mechanical advantage of 8.
The resistance arm is the side of the lever (from the fulcrum to the load) that carries the load.
A is a lever, a type of simple machine. The fulcrum is the point where the lever pivots, the effort arm is where the input force is applied, and the resistance arm is where the output force is found. Levers are used to amplify the input force to overcome a resistance.
Divide the length of the force arm by the length of the resistance arm.
The mechanical advantage of a lever is calculated by dividing the length of the effort arm by the length of the resistance arm. In this case, the MA would be 5 (100cm/20cm).
The resistance arm of a lever is the distance between the fulcrum (pivot point) and the point where the resistance force is applied. It determines the amount of force required to move the resistance, with a longer resistance arm requiring less force to overcome a given resistance.
The mechanical advantage of a lever is calculated by dividing the length of the lever arm on the effort side by the length of the lever arm on the resistance side. The formula for mechanical advantage is MA = Length of effort arm / Length of resistance arm. It represents the factor by which a lever multiplies the force applied to it.
The mechanical advantage of a lever is calculated by dividing the length of the effort arm by the length of the resistance arm. In this case, the mechanical advantage would be 16cm (effort arm) divided by 2cm (resistance arm), resulting in a mechanical advantage of 8.
The class 3 lever always has a longer resistance arm than the force arm. This is because the distance from the Fulcrum to the load/resistance is always going to be further that the fulcrum to where the effort/force is applied. If you look at a diagram of a 3rd class lever, you will be able to see why this is.
A Class 2 lever has the fulcrum located at one end, with the resistance/load in the middle and the effort applied at the other end. The effort arm is shorter than the resistance arm in a Class 2 lever.
A lever with a resistance arm of 3 inches and an effort arm of 1 inch would have more mechanical advantage as the effort arm is shorter than the resistance arm, making it easier to lift the load.
The mechanical advantage of a lever is calculated by dividing the effort arm length by the resistance arm length. In this case, the mechanical advantage would be 2, as 3 feet (effort arm) divided by 1.5 feet (resistance arm) equals 2.
The mechanical advantage of a lever is calculated by dividing the length of the effort arm by the length of the resistance arm. In this case, the mechanical advantage would be 12 feet (effort arm) divided by 3 feet (resistance arm), which equals a mechanical advantage of 4.