The charges in the insulator will rearrange themselves to minimize their mutual repulsion and align with the electric field of the nearby charged object. This redistribution of charges creates induced dipoles in the insulator, leading to an overall polarization of the material.
When a charged insulator is placed near an uncharged metallic object, the charges in the insulator induce opposite charges in the metallic object through electrostatic induction. This causes the metallic object to become polarized, with one side becoming positively charged and the other side becoming negatively charged. The presence of the insulator affects the behavior of the metallic object by creating an attractive force between the opposite charges, causing the metallic object to be attracted towards the charged insulator.
When a charged insulator is placed near an uncharged metallic object and they repel each other, it is because the charged insulator induces a charge separation in the metallic object. The like charges in both objects will repel each other due to the presence of the induced charges. This effect is a result of electrostatic forces acting between the charged and uncharged objects.
Inside a charged insulator, the electric field is 0, as charges cannot move freely in insulators. Outside the insulator, the electric field behaves as if all the charge is concentrated at the center of the insulator.
The electroscope will not show any deflection as plastic is an insulator and does not allow the flow of charges. The charged body will not induce any charge separation in the plastic strips, so there will be no movement of charges to indicate the presence of a charge on the electroscope.
Provide your second object is an insulator, - able to carry an electrical charge - it will have an electrical charge induced on it by the presence of a nearby electrically charged object. So, the second object does not need to have its own independent electrical charge, it is sufficient that it can carry one.
When a charged insulator is placed near an uncharged metallic object, the charges in the insulator induce opposite charges in the metallic object through electrostatic induction. This causes the metallic object to become polarized, with one side becoming positively charged and the other side becoming negatively charged. The presence of the insulator affects the behavior of the metallic object by creating an attractive force between the opposite charges, causing the metallic object to be attracted towards the charged insulator.
When a charged insulator is placed near an uncharged metallic object and they repel each other, it is because the charged insulator induces a charge separation in the metallic object. The like charges in both objects will repel each other due to the presence of the induced charges. This effect is a result of electrostatic forces acting between the charged and uncharged objects.
A charged insulator can be neutralized by grounding it, which involves connecting it to the Earth's surface with a conductor. This allows the excess charges to flow away, leaving the insulator with zero net charge. Alternatively, you can also neutralize a charged insulator by introducing an opposite charge to cancel out the excess charges.
Inside a charged insulator, the electric field is 0, as charges cannot move freely in insulators. Outside the insulator, the electric field behaves as if all the charge is concentrated at the center of the insulator.
The electroscope will not show any deflection as plastic is an insulator and does not allow the flow of charges. The charged body will not induce any charge separation in the plastic strips, so there will be no movement of charges to indicate the presence of a charge on the electroscope.
Provide your second object is an insulator, - able to carry an electrical charge - it will have an electrical charge induced on it by the presence of a nearby electrically charged object. So, the second object does not need to have its own independent electrical charge, it is sufficient that it can carry one.
wood is an insulator because charges stay on the point of contact.
Insulators block the flow of electricity, and therfore cannot be charged. That is completely wrong. An insulator can be charged. The difference is that the charge carriers in an insulator will be still, and will not respond to each other's fields. This is not true for a conductor, where the coulomb forces between charges will force all charge to the surface of the conductor, as a result of Gauss' law.
The presence of a glass plate between two charged bodies can act to reduce the force between them. The glass plate can act as an insulator, reducing the interaction between the charges on the bodies and thus decreasing the force of attraction or repulsion between them.
When an object is charged by induction, it means that the object becomes polarized or temporarily charged in response to the presence of a charged object nearby, without direct contact. This occurs because the charges in the object rearrange themselves in response to the nearby charged object, leading to an imbalance of charges.
A charged insulator can be discharged by passing it just above a flame because a flame has a cloud of ions above it. Even though the overall charge above the flame is neutral, a charged insulator will use up the ions that it needs and neutralize.
To charge a body by induction, bring a charged object near but not in contact with the body. This will cause the charges in the body to redistribute, leaving one side positively charged and the other negatively charged. Remove the charged object, and the body will remain charged due to the separation of charges induced by the presence of the charged object.