I believe that term would be 'half-life'
The half-life of a radionuclide is the time it takes for half of the radioactive atoms in a sample to undergo radioactive decay. It is a characteristic property of the radionuclide and can be used to determine the rate at which it decays.
No, radioactive decay is not the same as organic decay. The basic difference between radioactive decay and organic decay is that in organic decay, chemical compounds break down and the biochemical structure of the subject changes. This is a natural process that any biological structures will undergo, or it could be induced. In either case, it represents a chemical change. In radioactive decay, the actual atomic nuclei of atoms will break down in some way, depending on the substance being considered. It is the unstable atomic nucleus of given isotopes of elements that undergoes the change, and this is a nuclear or atomic change.
Radioactive decay happens in an unstable isotope of a given element, as the isotope decays radiation is given off. As for when exactly, the decay of a nucleus is spontaneous and random so averages are used, these averages are different for different isotopes, but are measured as the "half life" (the time it takes for half the nucleus to decay).
The decay rate of a specific radionuclide will depend on the quantity of the material in a sample. The more there is, the higher the decay rate. Decay rate for a specific isotope of a specific element is set by the nature of the radioisotope itself; it is an innate property or characteristic. Only by studying samples (specific quantities) containing large numbers of atoms of a given radioisotope, and by counting the number of decay events per unit of time, can we arrive at a characteristic called the half-life of that radioisotope.The half-life of a radionuclide is a statistically derived measure of the rate of its decay. And, to repeat, the rate of decay for a given radionuclide, is a natural characteristic of that radionuclide. It's the number of decays per unit of time that an observer can expect to count for a given sized sample of the material. Use the links below to gather more information.
Radioactive decay is a random event. But we can assess it by statistical analysis of a large number of decay events across time for a given radionuclide. Standard stastical analysis ideas apply. The way we know that it is the radionuclide we specify is that we refine the sample chemically. Then we look at the decay mode. If it is a situation where there is particle emission, we can identify the particle and the energy it comes out at. If its electromagnetic, we can specify an energy associated with the photon. The mode of decay and the energy cast off are the ways we can insure our "count" of the decay events specifically targets the radionuclide we are investigating. That and the applied chemistry we specified to clean up the sample. We're good at this radioactive decay thing. We can count even a very few decay events, and do so accurately across time (though more is better). And because we've done our homework as regards type of decay and energies, we know what it is that is decaying, and how long it is taking to decay. We can arrive at a half-life for a given radionuclide. A link can be found below.
The half life of an isotope refers to the rate at which a radioactive isotope undergoes radioactive decay. Specifically, it is the amount of time it takes for half of a given sample of a radioactive isotope to decay.
A chemical element disintegrate forming a new element. Radioactive radiations (alpha, beta, gamma, etc.) are released, also heat. An unstable nucleus breaks down into smaller parts.
The half-life of a radionuclide is the time it takes for half of the radioactive atoms in a sample to undergo radioactive decay. It is a characteristic property of the radionuclide and can be used to determine the rate at which it decays.
Charged particles that are given off by the nuclei of radioisotopes as they decay are called decay products or radioactive decay daughters. Examples include alpha particles, beta particles, and positrons. These particles carry energy and momentum away from the decaying nucleus.
The underlying truth in radioactive decay is that on an individual basis, no unstable atom will have a predictable time until it will decay. We understand and characterize the decay of radionuclides on the basis of statistical analysis. Only by looking at a large number of atoms of a given isotope of a given element and counting the decay events over time can we quantify the decay rate. The term half-life is used to state (based on the statistics) when half of a given quantity of a substance will have undergone radioactive decay. Note that atoms are incredibly tiny things, and even if we have very tiny quantities of a given radioactive material, we'll have huge numbers of atoms of that material in the sample. The larger the number of atoms of material and the longer we count the decay events, the more accurate our half-life value will be. Having said all that, no one can predict when a given atom of any radionuclide will decay. Each is different, and that is the basis for the random nature of nuclear or radioactive decay.
No, radioactive decay is not the same as organic decay. The basic difference between radioactive decay and organic decay is that in organic decay, chemical compounds break down and the biochemical structure of the subject changes. This is a natural process that any biological structures will undergo, or it could be induced. In either case, it represents a chemical change. In radioactive decay, the actual atomic nuclei of atoms will break down in some way, depending on the substance being considered. It is the unstable atomic nucleus of given isotopes of elements that undergoes the change, and this is a nuclear or atomic change.
Alpha decay is the type of radioactive decay in which positive particles, specifically alpha particles, are emitted. These alpha particles consist of two protons and two neutrons bound together, giving them a positive charge.
The decay of a radioactive element is governed by its half-life, which is the time it takes for half of the radioactive atoms in a sample to decay. Different radioactive elements have different half-lives, ranging from microseconds to billions of years. The decay rate is exponential, meaning that the rate of decay decreases over time as the amount of remaining radioactive material decreases.
Radioactive decay happens in an unstable isotope of a given element, as the isotope decays radiation is given off. As for when exactly, the decay of a nucleus is spontaneous and random so averages are used, these averages are different for different isotopes, but are measured as the "half life" (the time it takes for half the nucleus to decay).
okay
The decay rate of a specific radionuclide will depend on the quantity of the material in a sample. The more there is, the higher the decay rate. Decay rate for a specific isotope of a specific element is set by the nature of the radioisotope itself; it is an innate property or characteristic. Only by studying samples (specific quantities) containing large numbers of atoms of a given radioisotope, and by counting the number of decay events per unit of time, can we arrive at a characteristic called the half-life of that radioisotope.The half-life of a radionuclide is a statistically derived measure of the rate of its decay. And, to repeat, the rate of decay for a given radionuclide, is a natural characteristic of that radionuclide. It's the number of decays per unit of time that an observer can expect to count for a given sized sample of the material. Use the links below to gather more information.
If we are dating a substance on unknown age, no, this is because, we are assuming we know how much substance was initially present, also we assume there has been no contamination, lastly we assume the decay rate has always been the same.