kg
No, radial and centripetal acceleration are not the same. Radial acceleration is the acceleration towards the center of a circle, while centripetal acceleration is the acceleration that keeps an object moving in a circular path.
No, radial acceleration and centripetal acceleration are not the same. Radial acceleration is the acceleration directed towards the center of a circle, while centripetal acceleration is the acceleration that keeps an object moving in a circular path.
Centripetal acceleration is measured in meters per second squared (m/s^2), not in grams. Grams are a unit of mass, not acceleration. The centripetal acceleration of an object is the rate at which its velocity is changing direction as it moves in a circular path.
The formula for centripetal acceleration is a v2 / r, where a is the centripetal acceleration, v is the velocity, and r is the radius.
Centripetal acceleration is the acceleration directed towards the center of a circular path, while tangential acceleration is the acceleration along the tangent of the circle, perpendicular to the centripetal acceleration.
No, radial and centripetal acceleration are not the same. Radial acceleration is the acceleration towards the center of a circle, while centripetal acceleration is the acceleration that keeps an object moving in a circular path.
The same units as are used for any type of acceleration. In the SI, that would be meters/second2.
No, radial acceleration and centripetal acceleration are not the same. Radial acceleration is the acceleration directed towards the center of a circle, while centripetal acceleration is the acceleration that keeps an object moving in a circular path.
Centripetal acceleration is measured in meters per second squared (m/s^2), not in grams. Grams are a unit of mass, not acceleration. The centripetal acceleration of an object is the rate at which its velocity is changing direction as it moves in a circular path.
The formula for centripetal acceleration is a v2 / r, where a is the centripetal acceleration, v is the velocity, and r is the radius.
Centripetal acceleration is the acceleration directed towards the center of a circular path, while tangential acceleration is the acceleration along the tangent of the circle, perpendicular to the centripetal acceleration.
Yes, it is possible to experience centripetal acceleration without tangential acceleration. Centripetal acceleration is the acceleration directed towards the center of a circular path, while tangential acceleration is the acceleration along the direction of motion. In cases where an object is moving in a circular path at a constant speed, there is centripetal acceleration but no tangential acceleration.
Tangential acceleration is the acceleration in the direction of motion of an object, while centripetal acceleration is the acceleration towards the center of a circular path. Tangential acceleration changes an object's speed, while centripetal acceleration changes its direction.
That's called 'centripetal acceleration'. It's the result of the centripetal forceacting on the object on the curved path.
Centripetal acceleration can be calculated using the formula a v2 / r, where a is the centripetal acceleration, v is the velocity of the object, and r is the radius of the circular path.
Centripetal acceleration is directly proportional to velocity squared and inversely proportional to the radius of the circular path. This means that as velocity increases, centripetal acceleration increases, and as the radius of the circle increases, centripetal acceleration decreases.
To find the centripetal acceleration, use the formula a v2 / r, where a is the centripetal acceleration, v is the velocity of the object, and r is the radius of the circular path.