Ignoring air resistance ...
Any object dropped near the Earth's surface reaches a speed of 43.9 feet per second
after falling 30 feet. The velocity is 43.9 feet per second down. The object's weight
makes no difference.
The force a falling object exerts upon impact is dependent on the object's mass, gravity, and the distance fallen. Using the formula F = mgh, where F is the force, m is the mass, g is the acceleration due to gravity, and h is the height fallen, the force exerted by an 80-pound object falling 10 feet would be approximately 3520 pounds.
The net force acting on the object can be calculated using the equation F = m*a, where F is the force, m is the mass of the object, and a is the acceleration due to gravity. The mass of the object can be converted from pounds to slugs, and the acceleration due to gravity is approximately 32 ft/s^2. Plugging in the values, we can calculate the net force.
Drop a pound of feathers (in a bag) and a pound of lead from a height. The smaller mass of the lead will let it fall faster due to less air resistance, than the greater mass and much greater air resistance of the feathers.
The weigh the same. A pound is a pound is a pound no matter what the object is.
well there are 16 ounces in a pound so just do 37 times 16 and that should give u the answer
The force a falling object exerts upon impact is dependent on the object's mass, gravity, and the distance fallen. Using the formula F = mgh, where F is the force, m is the mass, g is the acceleration due to gravity, and h is the height fallen, the force exerted by an 80-pound object falling 10 feet would be approximately 3520 pounds.
The net force acting on the object can be calculated using the equation F = m*a, where F is the force, m is the mass of the object, and a is the acceleration due to gravity. The mass of the object can be converted from pounds to slugs, and the acceleration due to gravity is approximately 32 ft/s^2. Plugging in the values, we can calculate the net force.
it depends how far they are falling
dog and cat a thirty pound weight.
About thirty bucks a pound.
Drop a pound of feathers (in a bag) and a pound of lead from a height. The smaller mass of the lead will let it fall faster due to less air resistance, than the greater mass and much greater air resistance of the feathers.
4.8 ounces
The pound weight of the object being measured is 5 pounds.
If they're not falling through air, then a bean and a battleship both fall 692 feetin 6.556 seconds. The weight of the object makes no difference.If the object IS falling through air, then in order to answer the question, we need toknow the object's shape, size, and volume, plus the temperature, humidity, density,and pressure of the air, at every altitude between the ground and 692 feet.
Any object near the surface of the earth, falling without air resistance and under the influence of only gravity, falls 789 feet. (rounded) Its weight makes no difference.
16 ounces is one pound
hi I'm happy