The velocity of a wave is calculated using the formula: velocity = frequency × wavelength. Therefore, the velocity of a wave with a frequency of 6 hertz and a wavelength of 2 meters is 12 m/s.
You can use the equation v=fw. that is velocity (in meters per second) equals the frequency (in hertz) times the wavelength (in meters). so you can find the velocity of a wave with the frequency and the wavelength.
The frequency of a sound wave can be calculated using the formula: frequency = velocity / wavelength. Plugging in the values given, we get frequency = 341 m/s / 0.8 m = 426.25 Hz. Therefore, the frequency of the sound wave is 426.25 Hertz.
Wavelength is a length. Hence, the metric unit for it is "meter". Frequency is a reciprocal of time. Hence, the unit for it is "per second", named "Hertz".
Wavelength is speed, of light, in this case, divided by frequency. 3 x 108 meters per second divided by 6.82 x 1014 Hertz is 0.4 micrometers.
Answer: frequency = 272 Hz. Given the wave velocity (speed of sound) and wavelength, find the frequency of the wave. Velocity = 340.0 m/s, Wavelength = 1.25 m. Formulas: Velocity = wavelength * frequency. Frequency = velocity / wavelength. Calculation: Frequency = (340.0 m/s) / (1.25 m) = 272 Hz. (Where Hertz = cycles / second.)
Speed = (wavelength) x (frequency) = (2 x 6) = 12 meters per second.That's the wave's speed. "Velocity" is something different, not just a wordto use when you mean "speed" but you want to sound more technical.
You can use the equation v=fw. that is velocity (in meters per second) equals the frequency (in hertz) times the wavelength (in meters). so you can find the velocity of a wave with the frequency and the wavelength.
The frequency of a sound wave can be calculated using the formula: frequency = velocity / wavelength. Plugging in the values given, we get frequency = 341 m/s / 0.8 m = 426.25 Hz. Therefore, the frequency of the sound wave is 426.25 Hertz.
The wave speed is (frequency) x (wavelength) = 342 meters per second.We can't describe its velocity, because we don't have any informtion aboutits direction, beamwidth, etc.
Just divide the speed of light (in meters/second) by the frequency (in hertz) - that will give you the wavelength (in meters). You can then convert that to nm.
Wavelength = speed/frequency = 30/10 = 3 meters
Just multiply the wavelength (in meters) with the frequency (in Hertz) to get the speed (in m/s).
Wavelength is a length. Hence, the metric unit for it is "meter". Frequency is a reciprocal of time. Hence, the unit for it is "per second", named "Hertz".
You get a speed. If the 'Hertz' is the frequency of a particular wave, and the 'meters' is the wavelength of the same wave, then their product is the speed of that wave.
The frequency is 1/5 = 0.2 Hertz. The wavelength is irrelevant in this question.
If you multiply the wavelength (in meters) and the frequency (in Hertz), you will get the speed of the wave (in meters per second).
When the wavelength of a wave increases, the frequency decreases. When the wavelength decreases, the frequency decreases. These two values are said to be inversely proportional. Here is the equation for velocity of a wave: v = f λ where v = velocity (usually 3.0 x 108 meters/second2, which is the speed of light) f = frequency (usually in Hertz or 1/seconds) λ = wavelength (usually in nm or nanometers)