The object's velocity is approximately 0.83m/s
Kinetic energy is at its greatest point when an object is moving at its maximum velocity. This is because kinetic energy is directly proportional to the square of the velocity of an object. Therefore, the faster an object is moving, the greater its kinetic energy will be.
The kinetic energy of an object is greatest when its velocity is at its maximum. Kinetic energy is directly proportional to the square of the velocity of the object, so as the velocity increases, the kinetic energy increases exponentially.
The kinetic energy of an object is proportional to the square of its velocity. This means that as an object's velocity increases, its kinetic energy increases exponentially.
The kinetic energy of an object increases as it accelerates. This is because kinetic energy is directly proportional to the square of the object's velocity. As the object accelerates, its velocity increases, resulting in a greater kinetic energy.
The amount of kinetic energy an object has depends on its mass and velocity. The kinetic energy of an object increases as its mass or velocity increases. Mathematically, kinetic energy is calculated as 1/2 times the mass of the object times the square of its velocity.
The kinetic energy of an object is greatest when its velocity is at its maximum. Kinetic energy is directly proportional to the square of the velocity of the object, so as the velocity increases, the kinetic energy increases exponentially.
Kinetic energy is at its greatest point when an object is moving at its maximum velocity. This is because kinetic energy is directly proportional to the square of the velocity of an object. Therefore, the faster an object is moving, the greater its kinetic energy will be.
The kinetic energy of an object is proportional to the square of its velocity. This means that as an object's velocity increases, its kinetic energy increases exponentially.
The kinetic energy of an object increases as it accelerates. This is because kinetic energy is directly proportional to the square of the object's velocity. As the object accelerates, its velocity increases, resulting in a greater kinetic energy.
The amount of kinetic energy an object has depends on its mass and velocity. The kinetic energy of an object increases as its mass or velocity increases. Mathematically, kinetic energy is calculated as 1/2 times the mass of the object times the square of its velocity.
The relationship between the kinetic energy (k) of an object and its velocity (v) in physics is that the kinetic energy of an object is directly proportional to the square of its velocity. This means that as the velocity of an object increases, its kinetic energy increases at a greater rate.
The velocity of the object. Kinetic energy is directly proportional to an object's mass and the square of its velocity. Therefore, changes in velocity have a larger impact on kinetic energy compared to changes in mass.
four times. Kinetic energy is directly proportional to the square of the velocity of an object, so if the velocity is doubled, the kinetic energy will be four times greater.
When an object's velocity doubles, its kinetic energy increases by a factor of four. This relationship is described by the kinetic energy equation, which states that kinetic energy is directly proportional to the square of an object's velocity.
Increasing the object's velocity would cause the greatest increase in its kinetic energy. This is because kinetic energy is directly proportional to the square of the object's velocity.
its particles move faster
Kinetic energy is given by the following equaiton: KE = 0.5*m*v^2 Where KE is kinetic energy, m is the object's mass, and v is its velocity. In other words, an object's kinetic energy is dependent on its mass and the square of its velocity. Note that since the velocity term is squared, velocity has a larger effect on kinetic energy than mass. For example, if you double mass, the kinetic energy will also double, but if you double velocity, kinetic energy increases by a factor of four.