The wavelength is (the speed of the wave) / (350) .
Wavelength = speed/frequency = 2/15 Hz = roughly 0.133... Hz.
The frequency of a UV photon with a wavelength of 350 nm can be calculated using the equation: frequency = speed of light / wavelength. The speed of light is approximately 3.00 x 10^8 m/s. Plugging in the values, we find that the frequency of a UV photon with a wavelength of 350 nm is approximately 8.57 x 10^14 Hz.
The wavelength of a 565 Hz signal can be calculated using the formula: wavelength = speed of light / frequency. The speed of light is approximately 3 x 10^8 meters per second. Therefore, the wavelength of a 565 Hz signal is approximately 531,858 meters.
The wavelength of a wave is dependent on its speed and frequency. To calculate the wavelength of a wave with a frequency of 0.5 Hz, you need additional information such as the speed of the wave. Without knowing the speed, it is not possible to determine the wavelength.
The wavelength of a 440 Hz wave in air can be calculated using the formula: wavelength = speed of sound in air / frequency. The speed of sound in air at room temperature is approximately 343 m/s. Therefore, the wavelength of a 440 Hz wave in air is approximately 0.780 meters.
Wavelength = speed/frequency = 350/640 = 54.7 centimeters (rounded)
We got the formula: speed of medium c = frequency f times wavelength lambda. f = c / lambda lambda = c / f c = 343 m/s at 20°C or 68°F in air. For f = 350 Hz lambda = 343 / 350 = 0.98 meters
Wavelength = speed/frequency = 2/15 Hz = roughly 0.133... Hz.
Radio waves have the longest wavelength among the electromagnetic spectrum, ranging from about 1 millimeter to over 100 kilometers.
The frequency of a UV photon with a wavelength of 350 nm can be calculated using the equation: frequency = speed of light / wavelength. The speed of light is approximately 3.00 x 10^8 m/s. Plugging in the values, we find that the frequency of a UV photon with a wavelength of 350 nm is approximately 8.57 x 10^14 Hz.
The wavelength of a sound wave is inversely related to its frequency. Since the speed of sound in air is approximately constant, a lower frequency (like 266 Hz) corresponds to a longer wavelength, while a higher frequency (400 Hz) has a shorter wavelength. Specifically, the wavelength of the 266 Hz sound wave will be longer than that of the 400 Hz sound wave.
The wavelength of a 565 Hz signal can be calculated using the formula: wavelength = speed of light / frequency. The speed of light is approximately 3 x 10^8 meters per second. Therefore, the wavelength of a 565 Hz signal is approximately 531,858 meters.
The wavelength of a wave is dependent on its speed and frequency. To calculate the wavelength of a wave with a frequency of 0.5 Hz, you need additional information such as the speed of the wave. Without knowing the speed, it is not possible to determine the wavelength.
The wavelength of a 440 Hz wave in air can be calculated using the formula: wavelength = speed of sound in air / frequency. The speed of sound in air at room temperature is approximately 343 m/s. Therefore, the wavelength of a 440 Hz wave in air is approximately 0.780 meters.
The wavelength is 671 nm.
Lower frequency equates to a longer wavelength, so the 340 Hz tuning fork would emit a longer wavelength sound.
To find the wavelength of the water wave, you can use the formula: wavelength = speed / frequency. Plugging in the values given, you get: wavelength = 4.0 m/s / 2.50 Hz = 1.6 meters. Therefore, the wavelength of the water wave is 1.6 meters.