answersLogoWhite

0

Work-energy principle states that the work done on an object is equal to the change in its kinetic energy. This principle helps in understanding how energy is transferred to or from an object to change its motion. Mathematically, it is represented as: Work = Change in Kinetic Energy.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Physics

What does the work-kinetic energy theorem mean in words?

The work-energy theorem states that the work done on an object is equal to the change in its kinetic energy. This means that if work is done on an object, it will either speed up or slow down depending on the direction of the work.


What is the relationship between work and kinetic energy as described by the work-kinetic energy theorem?

The work-kinetic energy theorem states that the work done on an object is equal to the change in its kinetic energy. This means that when work is done on an object, it results in a change in its kinetic energy. In other words, the work done on an object is directly related to the change in its kinetic energy.


What is the relationship between work and kinetic energy?

The relationship between work and kinetic energy is that work done on an object can change its kinetic energy. When work is done on an object, it can increase or decrease the object's kinetic energy, which is the energy of motion. The work-energy theorem states that the work done on an object is equal to the change in its kinetic energy.


How does the work kinetic energy theorem explain the relationship between the work done on an object and its resulting change in kinetic energy?

The work-kinetic energy theorem states that the work done on an object is equal to the change in its kinetic energy. This means that when work is done on an object, it results in a change in the object's kinetic energy.


How is kinetic energy gained is related to the work done?

Kinetic energy gained by an object is directly related to the work done on it. Work done on an object transfers energy to it, increasing its kinetic energy. The work-energy theorem states that the work done on an object is equal to the change in its kinetic energy.

Related Questions

What does the work-kinetic energy theorem mean in words?

The work-energy theorem states that the work done on an object is equal to the change in its kinetic energy. This means that if work is done on an object, it will either speed up or slow down depending on the direction of the work.


What is the relationship between work and kinetic energy as described by the work-kinetic energy theorem?

The work-kinetic energy theorem states that the work done on an object is equal to the change in its kinetic energy. This means that when work is done on an object, it results in a change in its kinetic energy. In other words, the work done on an object is directly related to the change in its kinetic energy.


What is the relationship between work and kinetic energy?

The relationship between work and kinetic energy is that work done on an object can change its kinetic energy. When work is done on an object, it can increase or decrease the object's kinetic energy, which is the energy of motion. The work-energy theorem states that the work done on an object is equal to the change in its kinetic energy.


How does the work kinetic energy theorem explain the relationship between the work done on an object and its resulting change in kinetic energy?

The work-kinetic energy theorem states that the work done on an object is equal to the change in its kinetic energy. This means that when work is done on an object, it results in a change in the object's kinetic energy.


How is kinetic energy gained is related to the work done?

Kinetic energy gained by an object is directly related to the work done on it. Work done on an object transfers energy to it, increasing its kinetic energy. The work-energy theorem states that the work done on an object is equal to the change in its kinetic energy.


Is work and kinetic energy the same?

Work and kinetic energy are related concepts but not the same. Work is the transfer of energy that results in the displacement of an object, while kinetic energy is the energy an object possesses due to its motion. Work can change an object's kinetic energy by transferring energy to or from it.


Does the work-kinetic energy theorem hold for both positive and negative work?

Yes, the work-kinetic energy theorem holds for both positive and negative work. Positive work increases the kinetic energy of an object, while negative work decreases it. The theorem states that the net work done on an object is equal to the change in its kinetic energy.


What is the relationship between the work done on an object and its change in kinetic energy?

The work done on an object is directly related to its change in kinetic energy. According to the work-energy theorem, the work done on an object is equal to the change in its kinetic energy. This means that when work is done on an object, its kinetic energy will either increase or decrease depending on the direction of the work.


What does it mean if an object has kinetic energy?

an object has no kinetic energy if it is not moving


Is work and kinetic energy equal the same thing?

No, work and kinetic energy are not the same thing. Work is the transfer of energy that results from a force acting over a distance, while kinetic energy is the energy an object possesses due to its motion. Work can change an object's kinetic energy by transferring energy to or from it.


If work done on an object is equal to object's change in kinetic energy this the state of?

If the work done on an object is equal to the object's change in kinetic energy, then the object is in a state of work-energy theorem. This theorem states that the work done on an object is equal to the change in its kinetic energy.


When work is done is there a change in kinetic energy?

Yes, when work is done on an object, there is usually a change in its kinetic energy. Work transfers energy to the object, which can result in an increase in its speed and therefore a change in its kinetic energy.