answersLogoWhite

0

You seem to be referring to sound waves. When you see the coils of a slinky become alternately close together and then farther apart you are seeing what happens to the molecules in air when a sound wave passes and compresses them then decompresses them.

User Avatar

Wiki User

11y ago

What else can I help you with?

Continue Learning about Physics

How does sound travel through a slinky?

Sound waves travel through a slinky by causing the coils of the slinky to vibrate back and forth. The kinetic energy from these vibrations is transferred along the length of the slinky, allowing the sound wave to propagate. The density and elasticity of the slinky material help in transmitting the sound energy effectively.


What do slinky waves and seismic waves have in common?

Slinky waves and seismic waves both involve the propagation of energy through a medium. However, slinky waves move through a physical structure like a spring, while seismic waves travel through the Earth's crust due to various forces such as earthquakes. Both types of waves exhibit properties such as reflection, refraction, and diffraction.


What is the metal on a slinky considered when making waves?

The metal on a slinky is considered a medium for transmitting mechanical waves. When a disturbance is applied to the slinky, it creates compressional and rarefactional waves that travel along the metal coils. This allows the wave energy to propagate through the slinky from one end to the other.


How does this speed change as the slinky is stretched?

As the slinky is stretched, the speed at which the waves travel through it decreases. This is because the tension in the slinky increases, leading to a slower propagation of the waves. The relationship between the speed of the wave and the tension in the medium is described by the wave speed equation.


How can you make compression wave using a slinky?

To create a compression wave in a slinky, you can compress one end and release it quickly. The compression will travel through the slinky as a wave, with the coils getting closer together and then returning to their original spacing. This is similar to how energy is transferred through a medium in a compression wave.

Related Questions

What is a slinky seismology?

Slinky seismology is a simple and educational experiment where a slinky toy is used to simulate and demonstrate how seismic waves travel through different materials. By shaking one end of the slinky, users can observe how the energy is transferred through the coils, similar to how seismic waves move through the Earth's crust.


How does sound travel through a slinky?

Sound waves travel through a slinky by causing the coils of the slinky to vibrate back and forth. The kinetic energy from these vibrations is transferred along the length of the slinky, allowing the sound wave to propagate. The density and elasticity of the slinky material help in transmitting the sound energy effectively.


What toy is used to demonstrate seismic waves?

A popular toy used to demonstrate seismic waves is the Slinky toy. By holding one end of the Slinky and shaking it back and forth, you can create a visual representation of how seismic waves travel through the Earth. The coils of the Slinky demonstrate the movement of energy waves, similar to how seismic waves move through the Earth.


What do slinky waves and seismic waves have in common?

Slinky waves and seismic waves both involve the propagation of energy through a medium. However, slinky waves move through a physical structure like a spring, while seismic waves travel through the Earth's crust due to various forces such as earthquakes. Both types of waves exhibit properties such as reflection, refraction, and diffraction.


What is the metal on a slinky considered when making waves?

The metal on a slinky is considered a medium for transmitting mechanical waves. When a disturbance is applied to the slinky, it creates compressional and rarefactional waves that travel along the metal coils. This allows the wave energy to propagate through the slinky from one end to the other.


How does this speed change as the slinky is stretched?

As the slinky is stretched, the speed at which the waves travel through it decreases. This is because the tension in the slinky increases, leading to a slower propagation of the waves. The relationship between the speed of the wave and the tension in the medium is described by the wave speed equation.


How can you make compression wave using a slinky?

To create a compression wave in a slinky, you can compress one end and release it quickly. The compression will travel through the slinky as a wave, with the coils getting closer together and then returning to their original spacing. This is similar to how energy is transferred through a medium in a compression wave.


What happens to the amplitude of the longitudinal waves as the waves move from the large coil slinky to the small coil slinky?

The amplitude of longitudinal waves decreases as they move from the large coil slinky to the small coil slinky due to energy loss caused by friction and absorption. This results in a reduction in the intensity of the waves as they propagate through the smaller coil slinky.


Which one the seismic waves has been compared to a toy slinky?

The S-wave has been compared to a toy slinky because it moves in a side-to-side motion, similar to how a slinky moves when you shake one end. This type of wave can only travel through solid materials and is slower than P-waves.


Do electromagnetic waves have to travel through matter?

EM waves travel through space between atoms, but are either; reflected, refracted or absorbed by physical matter when they collide. Gravity can also bend the path of EM wave travel.


Which seismic wave is compared to a toy Slinky?

The S wave, or secondary wave, is often compared to a toy Slinky because both waves move in a back-and-forth motion perpendicular to the direction of wave propagation. Just like a Slinky can be seen extending and contracting as it moves, S waves exhibit similar behavior as they travel through the Earth's interior.


How do we know that electromagnetic waves can travel through to vacuum?

Electromagnetic waves are a form of energy that does not require a medium to travel through, so they can propagate through a vacuum. This is due to the nature of electromagnetic fields, which can self-propagate and do not rely on particles to transmit the wave. This property has been extensively demonstrated through various scientific experiments and observations, affirming that electromagnetic waves can travel through a vacuum.