The principle that states the buoyant force on an object immersed in a fluid equals the weight of the fluid displaced is known as Archimedes' principle. It explains how objects float or sink in fluids based on the balance of forces acting on them.
Buoyant force is a force exerted by a fluid that opposes the weight of an object immersed in the fluid. The strength of the buoyant force depends on the volume of the fluid displaced by the object. It can be calculated using Archimedes' principle, which states that the buoyant force is equal to the weight of the fluid displaced.
Archimedes' Principle is "The buoyant force acting on an object equals the weight, (force of gravity) of the fluid displaced by the object. (Answer found in sciencepowere grade 8 textbook.)
The weight of the fluid displaced by an object submerged in a fluid is equal to the weight of the object itself. This principle is known as Archimedes' principle and is fundamental in determining buoyant forces acting on objects in fluids.
The mass of the water displaced by an object times the acceleration gravity (commonly denoted as "g" and known to be 9.81 m/s2 on or near the surface of the Earth) equals the buoyant force. This is shown as:Fbuoy= mgFbuoy is the buoyant force on the objectm is the mass of the water displaced by the objectg is the gravitational constantI think what you were really trying to ask is, "what is the relationship between the weight of the displaced water of an object and the buoyant force acting on the object?"In this case I would have answered that the buoyant force on an object is equal to the weight of the water displaced by the object.
The weight of water displaced by a one ton ship would be one ton, as it experiences a buoyant force equal to the weight of the water it displaces (Archimedes' Principle).
Archimedes's principle states that the buoyant force acting on an object immersed or floating in a fluid equals the weight of the fluid displaced.
Buoyant force is a force exerted by a fluid that opposes the weight of an object immersed in the fluid. The strength of the buoyant force depends on the volume of the fluid displaced by the object. It can be calculated using Archimedes' principle, which states that the buoyant force is equal to the weight of the fluid displaced.
Not at all. (The buoyancy force equals the weight if the displaced water,)
A buoyant force equals the weight of the fluid being displaced
Yes, assuming that immersed object has no internal voids which the fluid cannot fill (e.g. a hollow sphere).
Archimedes' Principle is "The buoyant force acting on an object equals the weight, (force of gravity) of the fluid displaced by the object. (Answer found in sciencepowere grade 8 textbook.)
The weight of the fluid displaced by an object submerged in a fluid is equal to the weight of the object itself. This principle is known as Archimedes' principle and is fundamental in determining buoyant forces acting on objects in fluids.
The mass of the water displaced by an object times the acceleration gravity (commonly denoted as "g" and known to be 9.81 m/s2 on or near the surface of the Earth) equals the buoyant force. This is shown as:Fbuoy= mgFbuoy is the buoyant force on the objectm is the mass of the water displaced by the objectg is the gravitational constantI think what you were really trying to ask is, "what is the relationship between the weight of the displaced water of an object and the buoyant force acting on the object?"In this case I would have answered that the buoyant force on an object is equal to the weight of the water displaced by the object.
Well, as an object is in a fluid, it displaces the water and more of one or more different objects same or different will cause more water displacement.
The weight of water displaced by a one ton ship would be one ton, as it experiences a buoyant force equal to the weight of the water it displaces (Archimedes' Principle).
That's correct. The buoyant force is the upward force exerted by a fluid on an object immersed in it, counteracting the object's weight. Weight is the force exerted by gravity on the object. When an object is floating in a fluid, the buoyant force equals the weight of the fluid displaced by the object, allowing it to stay afloat.
The conclusion of the Archimedes principle is simply that the upward buoyant force that is experienced by a body immersed in a fluid, is equivalent to the weight of the fluid that the body displaces. This allows the volume of an object to be measured by measuring the volume of liquid it displaces after submerging. For any immersed object, the volume of the submerged portions equals the volume of fluid it displaces.