Fusion releases more energy than fission. Fusion is the process of combining light atomic nuclei to form a heavier nucleus, while fission is the process of splitting a heavy nucleus into lighter nuclei. Fusion reactions release more energy because they involve combining lighter nuclei to form more stable nuclei, releasing large amounts of energy in the process.
Fusion releases more energy than fission.
Fusion is more powerful than fission because it releases a larger amount of energy per reaction, leading to greater power output. Fusion is the process that powers the sun and involves the merging of lighter atomic nuclei to form a heavier nucleus, while fission involves splitting a heavy atomic nucleus into lighter ones.
Nuclear fission does not produce more energy than nuclear fusion. In nuclear fusion (6.4 MeV) per nucleon is given out which is much greater than the energy given out per nucleon (1 MeV) during a nuclear fission reaction.
Nuclear energy releases more energy than chemical energy. Nuclear reactions involve the splitting (fission) or merging (fusion) of atomic nuclei, which release a large amount of energy compared to chemical reactions that involve the breaking and forming of chemical bonds.
Fusion and fission is related to combining (fusion) or splitting (fission) radioactive nuclei, in both cases releasing binding energy (The Strong Atomic Force). Fission is more commonly used in nuclear power plants and A-Bombs, while fusion is more commonly used in H-Bombs and in the Stars.
Fusion releases more energy than fission.
Fusion provides more energy per gram of fuel than fission. Fusion reactions release several times more energy compared to fission reactions, making fusion a more efficient and powerful energy source.
Fusion produces energy more than fission by around 400 times for same mass.
Fusion releases more energy than fission per unit mass of fuel. Fusion reactions involve combining light atomic nuclei to form heavier ones, releasing large amounts of energy in the process. In contrast, fission reactions involve splitting heavy atomic nuclei, releasing less energy per unit mass.
Fusion is more powerful than fission because it releases a larger amount of energy per reaction, leading to greater power output. Fusion is the process that powers the sun and involves the merging of lighter atomic nuclei to form a heavier nucleus, while fission involves splitting a heavy atomic nucleus into lighter ones.
With nuclear fission, a large atomic nucleus (such as a uranium nucleus) breaks apart into smaller nuclei, and energy is released. With nuclear fusion, small atomic nuclei (such as hydrogen) join to become larger nuclei, and energy is released. Fusion of hydrogen releases much more energy than any other type of either fusion or fission. Note that the dividing line between heavy nuclei and light nuclei is the iron nucleus, which is at the perfect point of nuclear stability, so that neither fusion nor fission of iron nuclei would release any energy.
Nuclear fission does not produce more energy than nuclear fusion. In nuclear fusion (6.4 MeV) per nucleon is given out which is much greater than the energy given out per nucleon (1 MeV) during a nuclear fission reaction.
For each gram of reactant fusion produces more energy than fission.
Nuclear energy releases more energy than chemical energy. Nuclear reactions involve the splitting (fission) or merging (fusion) of atomic nuclei, which release a large amount of energy compared to chemical reactions that involve the breaking and forming of chemical bonds.
The primary result of a fission reaction is the conversion of mass to energy. In fission, the nucleus split, either through radioactive decay or as result of being bombarded by other subatomic particles known as neutrons.
The term atom bomb is somewhat ambiguous. The more precise distinction that you are trying to make is between a fission (or uranium or plutonium based) bomb and a fusion (or hydrogen based) bomb. The process of nuclear fission releases a certain amount of energy, and the process of nuclear fusion, per nucleus, releases a much larger amount of energy. Hence, you can build much bigger bombs based on fusion (although they still contain fission bombs which are required to create the high temperature needed for fusion).
Nuclear bombs use nuclear fission of some heavy element, usually uranium or plutonium. Thermonuclear bombs use the detonation of a fission bomb to ignite the fusion of hydrogen. Such weapons are more powerful than ordinary nuclear weapons because nuclear fusion releases more energy than nuclear fission, and because the process of fusion itself can be used to ignite more fission.