Because the acceleration of objects free falling is consistent anywhere on earth, one can conclude that inertial and gravitational mass are equal.
The easiest experiment to measure gravitational field strength is to use a simple pendulum. By measuring the period of oscillation of the pendulum, you can calculate the gravitational field strength based on the known length of the pendulum and the formula for the period of a simple pendulum.
The period of a simple pendulum does not depend on the mass of the pendulum bob. The period does depend on the strength of the gravitational field (acceleration due to gravity) and on the length of the pendulum. A longer length will result in a longer period, while a stronger gravitational field will result in a shorter period.
As it turns out, inertial mass is equivalent to gravitational mass, so if you simply weigh an object, you can determine both its weight and its inertia. These are always in direct proportion; twice as much weight equals twice as much inertia. The main difference is that weight does change in different locations; an object can become weightless while in orbit, while inertia does not change. But here on the surface of the Earth, it is very simple to weigh an object and get a meaningful result which applies both to gravitational mass and inertial mass. If you were in orbit, then the problem becomes a bit trickier.
Gravitational time dilation is a concept in physics where time passes at different rates in regions with different gravitational fields. In simple terms, the stronger the gravitational field, the slower time passes. This means that time moves slower closer to massive objects like planets or stars, compared to regions with weaker gravitational fields.
Gravitational force is the force of attraction that objects with mass exert on each other. It is responsible for keeping objects like planets in orbit around the sun and for creating tides on Earth. The strength of gravitational force depends on the mass of the objects and the distance between them.
simple observation is the easy way you known of looking/checking something to known other is right or wroth
Simple observation should give you the answer
Usually by simple observation.
hello
A simple way to describe this would be, an observation is what you see, and an interpretation is what you conclude about what you have seen. OR An observation is a fact, something your senses detect happening while an interpretation is what you make of it by what you have sensed with your senses.
The easiest experiment to measure gravitational field strength is to use a simple pendulum. By measuring the period of oscillation of the pendulum, you can calculate the gravitational field strength based on the known length of the pendulum and the formula for the period of a simple pendulum.
at the center of the earth, simple pendulmn has not any gravitational force(if we thought,the earth is an etended object) so at the center the gravitational acceleation is about 'zero' and that's why pendulumn's time period is 'infinite'.
The period of a simple pendulum does not depend on the mass of the pendulum bob. The period does depend on the strength of the gravitational field (acceleration due to gravity) and on the length of the pendulum. A longer length will result in a longer period, while a stronger gravitational field will result in a shorter period.
As it turns out, inertial mass is equivalent to gravitational mass, so if you simply weigh an object, you can determine both its weight and its inertia. These are always in direct proportion; twice as much weight equals twice as much inertia. The main difference is that weight does change in different locations; an object can become weightless while in orbit, while inertia does not change. But here on the surface of the Earth, it is very simple to weigh an object and get a meaningful result which applies both to gravitational mass and inertial mass. If you were in orbit, then the problem becomes a bit trickier.
Gravitational time dilation is a concept in physics where time passes at different rates in regions with different gravitational fields. In simple terms, the stronger the gravitational field, the slower time passes. This means that time moves slower closer to massive objects like planets or stars, compared to regions with weaker gravitational fields.
Simple observation will indicate if the Betta is making bubbles. You will see them at the surface of the water.
base on all observation and essy to calculate, rigorousy defined .simple to understand .