The tension in the string provides the centripetal force for the mass in uniform circular motion in this experiment. This tension acts towards the center of the circular path, keeping the mass moving in a circular motion instead of following a straight line.
The centripetal acceleration of an object in uniform circular motion is directed towards the center of the circular path and is perpendicular to the object's velocity. It is responsible for changing the direction of the object's velocity, keeping it moving in a circular path.
No, acceleration is not uniform in uniformly circular motion. In uniformly circular motion, the direction of the velocity vector is constantly changing, which means there is always a centripetal acceleration acting towards the center of the circle. This centripetal acceleration is not constant in magnitude, making the overall acceleration not uniform.
Yes, uniform circular motion involves constant speed but changing direction, which means there is acceleration present in the form of centripetal acceleration directed towards the center of the circular path.
The centripetal force acting on a satellite in uniform circular motion around Earth is directed towards the center of Earth. This force is necessary to keep the satellite moving in a circular path instead of following a straight line.
Some sources of error in a uniform circular motion experiment could include inaccuracies in measuring the radius of the circle, variations in the centripetal force due to friction or air resistance, and inconsistencies in measuring the period of the motion. Additionally, human errors in timing the motion or setting the apparatus could also contribute to inaccuracies.
The centripetal acceleration of an object in uniform circular motion is directed towards the center of the circular path and is perpendicular to the object's velocity. It is responsible for changing the direction of the object's velocity, keeping it moving in a circular path.
No, acceleration is not uniform in uniformly circular motion. In uniformly circular motion, the direction of the velocity vector is constantly changing, which means there is always a centripetal acceleration acting towards the center of the circle. This centripetal acceleration is not constant in magnitude, making the overall acceleration not uniform.
No
Yes, uniform circular motion involves constant speed but changing direction, which means there is acceleration present in the form of centripetal acceleration directed towards the center of the circular path.
The centripetal force acting on a satellite in uniform circular motion around Earth is directed towards the center of Earth. This force is necessary to keep the satellite moving in a circular path instead of following a straight line.
The centripetal force on a particle in uniform circular motion increases with the speed of the particle and the radius of the circular path. The mass of the particle also affects the centripetal force, as a heavier particle requires a stronger force to keep it moving in a circle at a constant speed.
Increase in radius affect the increase of the centripetal force on a particle in uniform circular motion. An increase in radius would cause a decrease in the force if velocity remains constant.
Some sources of error in a uniform circular motion experiment could include inaccuracies in measuring the radius of the circle, variations in the centripetal force due to friction or air resistance, and inconsistencies in measuring the period of the motion. Additionally, human errors in timing the motion or setting the apparatus could also contribute to inaccuracies.
Some sources of error when performing a lab experiment on uniform circular motion include friction in the rotational system, inaccuracies in measuring the radius of the circle, errors in timing the period of rotation, and uncertainties in recording the angular velocity of the object. These errors can lead to discrepancies in calculated values for centripetal force, acceleration, or velocity.
The force required to keep a body to be in a uniform circular motion is known as centripetal force means centre seeking force. This centripetal force is directly proportional to the square of the speed of the particle.
Centripetal acceleration is the acceleration that points towards the center of a circular path. Its magnitude is given by a = v^2 / r, where v is the speed of the object and r is the radius of the circle. The direction of centripetal acceleration is towards the center of the circular path.
An object in uniform motion does not experience centripetal force. Centripetal force is only present when an object is moving in a circular path, causing it to change direction. Uniform motion refers to constant velocity in a straight line without any change in speed or direction.