Gravitational energy depends on the masses involved and their distances.
For a small (relative to planet-sized masses) mass in a gravitational field, the gravitational potential energy is equal to mgh, where m is the mass of the small mass, g is the gravitational acceleration in the gravitational field, and h is the height of the small mass above the reference surface. This is exactly analogous to the above situation except that the distance has been changed to height above a reference surface in the large (planetary) mass' gravitational field.
Two types of energy that depend on the mass of an object are gravitational potential energy and kinetic energy. Gravitational potential energy is gained as an object is lifted against gravity, increasing with mass and height. Kinetic energy, on the other hand, depends on the mass of the object and its velocity.
mass m and height h Potential Energy = mgh where g is acceleration of gravity
There is more gravitational energy when two objects are closer together and less gravitational energy when they are farther apart. This is because the gravitational force between two objects is stronger when they are closer together and weaker when they are farther apart.
No. Gravitational force is the pull an object experience from gravity. Gravitational energy is the energy an object has from its position in a gravitational field. An object moving up in a gravitational field gains gravitational energy.
Gravitational forces depend on the masses of the objects involved and the distance between them. The force of gravity increases with the mass of the objects and decreases with the distance between them.
Two types of energy that depend on the mass of an object are gravitational potential energy and kinetic energy. Gravitational potential energy is gained as an object is lifted against gravity, increasing with mass and height. Kinetic energy, on the other hand, depends on the mass of the object and its velocity.
mass m and height h Potential Energy = mgh where g is acceleration of gravity
There is more gravitational energy when two objects are closer together and less gravitational energy when they are farther apart. This is because the gravitational force between two objects is stronger when they are closer together and weaker when they are farther apart.
The two variables that determine gravitational potential energy are height above earths surface mass (also air resistance may come into play but in physics friction and air resistance are usually ignored and)
Weight includes two main variables: mass and gravitational force. Mass is the amount of matter in an object, while gravitational force is the pull exerted by a planet or celestial body on that mass. The weight of an object can vary depending on the strength of the gravitational field it is in, such as on different planets.
Not directly; the two are independent. But if an object with gravitational potential energy falls, that energy may be converted to kinetic energy.
newten force
Mass and distance
No. Gravitational force is the pull an object experience from gravity. Gravitational energy is the energy an object has from its position in a gravitational field. An object moving up in a gravitational field gains gravitational energy.
On both masses, and on the distance.
Gravitational forces depend on the masses of the objects involved and the distance between them. The force of gravity increases with the mass of the objects and decreases with the distance between them.
Parameter