Radio waves have the longest wavelengths among all types of electromagnetic energy. They have wavelengths ranging from a few millimeters to kilometers.
The shorter the wavelength of a wave, the higher its energy.
The shorter the wavelength of a wave, the higher its energy.
The wavelength of an electromagnetic (EM) wave is inversely proportional to its energy - shorter wavelengths correspond to higher energy, and longer wavelengths correspond to lower energy. This phenomenon is described by the equation E = hν, where E is the energy of the EM wave, h is Planck's constant, and ν is the frequency of the wave.
Longer wavelength less energy and shorter wavelength equals more energy. This is because velocity (speed)=frequency x wavelength. And te velocity of all EM waves is the speed of light. we know the expression- frequency=speed of light(c)/wavelength Energy is given by- E=h*frequency=h*c/wavelength {h=Planck's constant} so,energy is directly proportional to frequency and inversly proportional to wavelength...that is energy increases with increase in frequency and decreases with increase in wavelength. example:-red color has more wavelength and hence has less energy.
The types of energy in the electromagnetic (EM) spectrum differ in terms of their wavelength and frequency. The spectrum ranges from low energy, long-wavelength radio waves to high-energy, short-wavelength gamma rays. Each type of energy interacts with matter differently and has unique properties and uses.
Radio waves have the longest wavelength in the electromagnetic spectrum (EM), and are pure energy, they have no mass.
Gamma radiation
As the wavelength decreases, the energy increases.
gamma rays
Extremely low frequency (ELF) waves have wavelength of the order of 100 megametres ( = 100,000 kilometres).
The shorter the wavelength of a wave, the higher its energy.
Radio Waves. Their wavelength is 103 meters (1 kilometer). Because of this, their waves have the lowest frequency.
The shorter the wavelength of a wave, the higher its energy.
The wavelength of an electromagnetic (EM) wave is inversely proportional to its energy - shorter wavelengths correspond to higher energy, and longer wavelengths correspond to lower energy. This phenomenon is described by the equation E = hν, where E is the energy of the EM wave, h is Planck's constant, and ν is the frequency of the wave.
Longer wavelength less energy and shorter wavelength equals more energy. This is because velocity (speed)=frequency x wavelength. And te velocity of all EM waves is the speed of light. we know the expression- frequency=speed of light(c)/wavelength Energy is given by- E=h*frequency=h*c/wavelength {h=Planck's constant} so,energy is directly proportional to frequency and inversly proportional to wavelength...that is energy increases with increase in frequency and decreases with increase in wavelength. example:-red color has more wavelength and hence has less energy.
The types of energy in the electromagnetic (EM) spectrum differ in terms of their wavelength and frequency. The spectrum ranges from low energy, long-wavelength radio waves to high-energy, short-wavelength gamma rays. Each type of energy interacts with matter differently and has unique properties and uses.
It tells you that the longer the wavelength the lower the energy. From the wavelength, one can also calculate the actual energy by using E = cxh/lambda where c is speed of light, h is Plank's constant and lambda is the wavelength.