answersLogoWhite

0

An elastic collision conserves kinetic energy. In this type of collision, the total kinetic energy before the collision is equal to the total kinetic energy after the collision.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Physics

What collision has no energy loss?

An elastic collision is a type of collision in which there is no net loss in kinetic energy. In an elastic collision, both momentum and kinetic energy are conserved. This means that the total kinetic energy of the system before the collision is equal to the total kinetic energy after the collision.


A collision in which the total momentum and kinetic energy remain constant?

An elastic collision is one in which both momentum and kinetic energy are conserved. In an elastic collision, the total kinetic energy before the collision is equal to the total kinetic energy after the collision. This type of collision is characterized by no energy being lost or dissipated as heat or sound.


What is the relationship between kinetic energy and the conservation of momentum in an inelastic collision?

In an inelastic collision, kinetic energy is not conserved because some of it is transformed into other forms of energy, such as heat or sound. However, momentum is always conserved in any type of collision, including inelastic collisions. This means that the total momentum before the collision is equal to the total momentum after the collision, even if kinetic energy is not conserved.


A collision in which kinetic energy may be transferred between the colliding particles but the total kinetic energy remains the same?

An elastic collision is a type of collision where kinetic energy can be transferred between colliding particles, but the total kinetic energy of the system remains constant before and after the collision. This means that energy is conserved in the collision process. Elastic collisions are characterized by no energy loss due to deformation or heat generation during the collision.


What makes some collisions elastic and others inelastic?

Collisions are elastic when kinetic energy is conserved, meaning the total kinetic energy of the system before the collision is equal to the total kinetic energy after the collision. In contrast, collisions are inelastic when kinetic energy is not conserved and some of the initial energy is transformed into other forms such as heat, sound, or deformation of objects involved in the collision. The nature of the collision (elastic or inelastic) depends on factors like the type of objects involved, their materials, and the forces acting during the collision.

Related Questions

What collision has no energy loss?

An elastic collision is a type of collision in which there is no net loss in kinetic energy. In an elastic collision, both momentum and kinetic energy are conserved. This means that the total kinetic energy of the system before the collision is equal to the total kinetic energy after the collision.


A collision in which the total momentum and kinetic energy remain constant?

An elastic collision is one in which both momentum and kinetic energy are conserved. In an elastic collision, the total kinetic energy before the collision is equal to the total kinetic energy after the collision. This type of collision is characterized by no energy being lost or dissipated as heat or sound.


What is the relationship between kinetic energy and the conservation of momentum in an inelastic collision?

In an inelastic collision, kinetic energy is not conserved because some of it is transformed into other forms of energy, such as heat or sound. However, momentum is always conserved in any type of collision, including inelastic collisions. This means that the total momentum before the collision is equal to the total momentum after the collision, even if kinetic energy is not conserved.


A collision in which kinetic energy may be transferred between the colliding particles but the total kinetic energy remains the same?

An elastic collision is a type of collision where kinetic energy can be transferred between colliding particles, but the total kinetic energy of the system remains constant before and after the collision. This means that energy is conserved in the collision process. Elastic collisions are characterized by no energy loss due to deformation or heat generation during the collision.


What makes some collisions elastic and others inelastic?

Collisions are elastic when kinetic energy is conserved, meaning the total kinetic energy of the system before the collision is equal to the total kinetic energy after the collision. In contrast, collisions are inelastic when kinetic energy is not conserved and some of the initial energy is transformed into other forms such as heat, sound, or deformation of objects involved in the collision. The nature of the collision (elastic or inelastic) depends on factors like the type of objects involved, their materials, and the forces acting during the collision.


What is the quantity that remains conserved in all types of collision?

The quantity that remains conserved in all types of collisions is momentum. This means that the total momentum before the collision is equal to the total momentum after the collision, regardless of the type of collision taking place.


The collision between two helium atoms is perfectly elastic so that momentum is conserved?

In an elastic collision, both momentum and kinetic energy are conserved. This means that the total momentum of the system before and after the collision remains the same. In the case of two helium atoms colliding elastically, the total momentum of the atoms before the collision will be equal to the total momentum of the atoms after the collision.


In which type of collision is the kinetic energy of the system unchanged?

In an elastic collision, the kinetic energy of the system remains unchanged. This means that the total kinetic energy before the collision is equal to the total kinetic energy after the collision.


What is the definition of a superelastic collision?

A superelastic collision is when the total kinetic energy AFTER a collision is more than the total kinetic energy BEFORE the collision. It's more easily seen when examining the speeds (the masses will normally stay the same) of the two objects. When the speeds are faster AFTER the collision than BEFORE the collision, you likely have a superelastic collision. (Kinetic Energy equals 1/2xMassxSpeed^2) When the speed increases there is a larger kinetic energy. Before you implode (I almost did) from the disregard of the first law of thermodynamics (that energy can't be created or destroyed, only transferred and transformed), the increase in kinetic energy is most likely a conversion of potential energy to kinetic energy. An example would be two carts with springs colliding and creating a supercollision. Since the springs are triggered because of the collision, their potential energy will be converted into kinetic energy and the carts will leave the collision with a larger velocity and thus more kinetic energy.


What happen when a moving object with momentum collides?

When a moving object with momentum collides with another object, the total momentum of the objects before the collision is conserved. Depending on the type of collision, momentum can be transferred between the objects. In an elastic collision, kinetic energy is also conserved, while in an inelastic collision, some energy is transformed into other forms, such as heat or sound.


When two bodies stick together after collision?

When two bodies stick together after a collision, it is known as a perfectly inelastic collision. In this type of collision, the kinetic energy is not conserved and the two objects move together as a single system after the collision. This usually occurs when the objects are made to stick together due to adhesive forces or when there is a high amount of deformation during the collision.


Distinguish beween and elastic and inelastic collision for wich type of collision is momentum conserved?

Momentum is conserved in both elastic and inelastic collisions. Mechanical energy is conserved only in elastic collisions. In inelastic collisions, part of the energy is "lost" - usually most of it would be converted to heat, eventually.