That's called gamma radiation.
No, radio waves have the lowest frequency on the electromagnetic spectrum, but they do not necessarily have the lowest energy per photon. The energy of a photon is determined by its frequency, with higher frequencies corresponding to higher energies. Therefore, photons from higher frequency waves such as gamma rays have higher energy per photon compared to radio waves.
Two types of waves that have the highest energy per photon are gamma rays and X-rays. Gamma rays have the highest energy in the electromagnetic spectrum, followed by X-rays.
Electromagnetic waves or radiation
Waves with lower frequency: for example radio waves.
As frequency increases in an electromagnetic wave, the photon energy increases, not decreases. This is because photon energy is directly proportional to the frequency of the electromagnetic wave, as described by Planck's equation E=hf, where E is energy, h is Planck's constant, and f is frequency.
No, radio waves have the lowest frequency on the electromagnetic spectrum, but they do not necessarily have the lowest energy per photon. The energy of a photon is determined by its frequency, with higher frequencies corresponding to higher energies. Therefore, photons from higher frequency waves such as gamma rays have higher energy per photon compared to radio waves.
The lowest possible energy state for a photon is when it has no energy, which corresponds to a frequency of zero.
Two types of waves that have the highest energy per photon are gamma rays and X-rays. Gamma rays have the highest energy in the electromagnetic spectrum, followed by X-rays.
Electromagnetic waves or radiation
Wikipedia says that a photon is a fixed quantity of light energy.
Waves with lower frequency: for example radio waves.
No, sound wave is translating wave of the matter. The solar energy is the wave carried by photon which is an energy (non-matter). There is no way a sound wave would be carried in the stream of photon.
frequency, energy
There is no such thing as "long energy" or "short energy". The electromagnetic spectrum is:Radio waves; microwaves; infrared; visible light; ultraviolet; x-rays; gamma rays. In this list, going from left to right: * The energy per photon increases. * The frequency increases. * The wavelength decreases. Thus, for instance, gamma rays have the LARGEST energy per photon; the LARGEST frequency; and the SHORTEST wavelength.
As frequency increases in an electromagnetic wave, the photon energy increases, not decreases. This is because photon energy is directly proportional to the frequency of the electromagnetic wave, as described by Planck's equation E=hf, where E is energy, h is Planck's constant, and f is frequency.
The measure of a photon's energy is its frequency or equivalently, its wavelength. This is determined by the amount of energy carried by the photon, corresponding to the electromagnetic spectrum as visible light, radio waves or X-rays depending on the energy level.
It really depends on the type of wave. In the case of electromagnetic waves, a higher frequency results in more energy per photon. Therefore, a longer wavelength results in less energy per photon.