If the acceleration of a body is greater than the acceleration due to gravity, the body will start moving upward against the force of gravity. It may continue to accelerate if the net force acting on the body is greater than the force of gravity.
Potential energy and gravitational potential energy are different from each other ."Potential energy is the ability of a body to do work." Anddue_to_its_height.%22">"Gravitational potential energy is the ability of a body to do work due to its height."Gravitational potential energy is a type of potential energy.
Gravitational potential energy is the energy stored in an object due to its height above the ground in a gravitational field. It is dependent on the object's mass, the acceleration due to gravity, and the height it is lifted to.
Gravitational potential energy is related to an object's height above the ground. The higher an object is positioned, the greater its gravitational potential energy. It is a form of potential energy that results from an object's position within a gravitational field.
A body A of mass m is placed in the gravitational field of a body B of mass M. The gravitational potential of body B at a point in the field is the work done is bringing unit mass from infinity to that point and is independent of body A. On the other hand, the gravitational potential energy of body A is the energy possessed by it due to its position in the field. In fact, Gravitational potential energy = mass of body(A) x gravitational potential
It requires energy to lift an object against the force of gravity, and this energy can be recovered (for example, converted to movement) if the object goes back down, so it makes sense to think that the energy went somewhere.
Yes if the body is for example near Jupiter
Yes. Weight is the product of mass and gravitational acceleration, so the greater (or lower) the gravitational acceleration, the greater (or lower) the weight.
Gravitational potential energy describes how much energy a body has in store by virtue of having been elevated to a specific height. The formula to calculate gravitational potential energy is:.U = mgh.Where:U is the potential energym is the mass of the objectg is the acceleration due to gravity, andh is the height the object will fall if dropped.
It is created when a body of unit mass is brought from infinity to that point without acceleration.
Potential energy and gravitational potential energy are different from each other ."Potential energy is the ability of a body to do work." Anddue_to_its_height.%22">"Gravitational potential energy is the ability of a body to do work due to its height."Gravitational potential energy is a type of potential energy.
Gravitational potential energy is the energy stored in an object due to its height above the ground in a gravitational field. It is dependent on the object's mass, the acceleration due to gravity, and the height it is lifted to.
No, the gravitational force of the Earth, or any body in the Universe, is because of the mass of that body...... the amount of matter the body comprises. The greater the mass, the greater the gravitational tug.
Gravitational potential energy is related to an object's height above the ground. The higher an object is positioned, the greater its gravitational potential energy. It is a form of potential energy that results from an object's position within a gravitational field.
A body A of mass m is placed in the gravitational field of a body B of mass M. The gravitational potential of body B at a point in the field is the work done is bringing unit mass from infinity to that point and is independent of body A. On the other hand, the gravitational potential energy of body A is the energy possessed by it due to its position in the field. In fact, Gravitational potential energy = mass of body(A) x gravitational potential
The inertia of a body can be defined as the relunctance of a body to acceleration. The mass of a body can be defined as a measure of the inertia of a body. This is because acceleration = resultant force / mass. So, if mass is greater, the less will be the acceleration of the body and hence the greater the inertia.
a nswer
It requires energy to lift an object against the force of gravity, and this energy can be recovered (for example, converted to movement) if the object goes back down, so it makes sense to think that the energy went somewhere.