the frequency of the wave increases.
If the velocity of a wave increases while the wavelength stays the same, the frequency of the wave must also increase to maintain the relationship between velocity, frequency, and wavelength (v = f * λ). This means the wave will have more cycles passing through a point in a given time period, resulting in a higher pitch or frequency.
If the frequency of a wave increases while the velocity stays the same, the wavelength of the wave must decrease. This relationship is governed by the equation v = f * λ, where v is the velocity, f is the frequency, and λ (lambda) is the wavelength. As frequency increases, wavelength decreases in order to keep the velocity constant.
This is not true practically. Theoretically speaking as velocity increases with wavelength remains constant, then frequency has to increase accordingly. Since the formula for velocity is given as: velocity of the wave v = frequency (nu) * wavelength (lamda). In reality the characteristic, namely, frequency remains constant when the speed of the wave changes as it traverses in different medium.
This is not true practically. Theoretically speaking as velocity increases with wavelength remains constant, then frequency has to increase accordingly. Since the formula for velocity is given as: velocity of the wave v = frequency (nu) * wavelength (lamda). In reality the characteristic, namely, frequency remains constant when the speed of the wave changes as it traverses in different medium.
The velocity of the wave is equal to the product of the frequency and the wavelength. Therefore, for constant wavelength, the wavelength will decrease. Furthermore, for an electromagnetic wave, the energy of the wave E = hf, where h is Planck's constant and f is the frequency, the energy of the wave decreases as frequency decreases (and the velocity within a vacuum is always constant and equal to c).
the frequency of the wave increases.
If the velocity of a wave increases while the wavelength stays the same, the frequency of the wave must also increase to maintain the relationship between velocity, frequency, and wavelength (v = f * λ). This means the wave will have more cycles passing through a point in a given time period, resulting in a higher pitch or frequency.
If the frequency of a wave increases while the velocity stays the same, the wavelength of the wave must decrease. This relationship is governed by the equation v = f * λ, where v is the velocity, f is the frequency, and λ (lambda) is the wavelength. As frequency increases, wavelength decreases in order to keep the velocity constant.
This is not true practically. Theoretically speaking as velocity increases with wavelength remains constant, then frequency has to increase accordingly. Since the formula for velocity is given as: velocity of the wave v = frequency (nu) * wavelength (lamda). In reality the characteristic, namely, frequency remains constant when the speed of the wave changes as it traverses in different medium.
This is not true practically. Theoretically speaking as velocity increases with wavelength remains constant, then frequency has to increase accordingly. Since the formula for velocity is given as: velocity of the wave v = frequency (nu) * wavelength (lamda). In reality the characteristic, namely, frequency remains constant when the speed of the wave changes as it traverses in different medium.
The velocity of the wave is equal to the product of the frequency and the wavelength. Therefore, for constant wavelength, the wavelength will decrease. Furthermore, for an electromagnetic wave, the energy of the wave E = hf, where h is Planck's constant and f is the frequency, the energy of the wave decreases as frequency decreases (and the velocity within a vacuum is always constant and equal to c).
velocity increases
Velocity = Frequency * Wavelength. If the wavelength increases and the frequency stays the same, then the speed of the wave will increase.
Assuming an electromechanical wave not much. The speed of the wave depends on the medium that the wave is passing through. In a vacuum it is the speed of light, through something else a lesser speed. The wavelength stays the same and the frequency stays the same.
If the mass stays the same but the velocity is increased, the momentum of the object will also increase. Momentum is directly proportional to velocity, so an increase in velocity will result in a proportionate increase in momentum.
We got the formula: speed of medium c = frequency f times wavelength lambda. f = c / lambda lambda = c / f If c increases, also f increases. c is proportional to f, if lambda stays constant. If c increases, also lambda increases. c is proportional to lambda, if fstays constant.
Frequency drops, assuming the velocity stays the same.