It stays the same.
If temperature remains constant and the volume of gas increases, the pressure will decrease. This is described by Boyle's Law, which states that pressure and volume are inversely proportional when temperature is constant.
No, pressure is dependent on temperature. As temperature increases, the pressure of a gas also increases, assuming volume remains constant (Boyle's Law). If volume is not constant, then pressure and temperature are directly proportional (Charles's Law).
Yes, the frequency of a wave remains constant as long as the medium temperature and pressure do not change. Temperature and pressure affect the speed of sound in a medium, not the frequency of the wave.
An isothermal process in thermodynamics is when the temperature remains constant, while an isobaric process is when the pressure remains constant.
An isobaric process is when pressure remains constant, while an isothermal process is when temperature remains constant in thermodynamics.
It will increase? No it will decrease when the same amount of gas is held at constant temperature.
If temperature remains constant and the volume of gas increases, the pressure will decrease. This is described by Boyle's Law, which states that pressure and volume are inversely proportional when temperature is constant.
In a closed system with constant pressure and no input or output of heat, the gas temperature will remain constant. In that same system, if the pressure is increased, then the gas temperature will also increase. If pressure is decreased, then the gas temperature will decrease.
volume increases
No, it is not possible for the balloon to naturally expand four times its initial volume while the temperature remains constant. According to Boyle's Law, at constant temperature, the pressure and volume of a gas are inversely proportional. Since the atmospheric pressure remains constant, the balloon's pressure of 200.0kPa would need to increase to expand, which cannot happen at constant temperature.
No, pressure is dependent on temperature. As temperature increases, the pressure of a gas also increases, assuming volume remains constant (Boyle's Law). If volume is not constant, then pressure and temperature are directly proportional (Charles's Law).
remains constant
remains constant
Pressure. This means that as pressure increases, volume decreases, and vice versa, as long as temperature remains constant.
When temperature and number of particles of a gas are constant, the pressure of the gas remains constant as well if the volume is fixed. This is known as Boyle's Law, which states that the pressure of a gas is inversely proportional to its volume when temperature and quantity of gas are held constant.
If pressure is held constant, volume and temperature are directly proportional. That is, as long as pressure is constant, if volume goes up so does temperature, if temperature goes down so does volume. This follows the model V1/T1=V2/T2, with V1 as initial volume, T1 as initial temperature, V2 as final volume, and T2 as final temperature.
Isothermal is where pressure and/or volume changes, but temperature remains constant. Pressure, Volume, and Temperature are related as: PV = nRT =NkT for an ideal gas. Here, we see that since a balloon's volume is allowed to change, its pressure remains relatively constant. Whenever there is a pressure change, it'll be offset by an equivalent change in volume, thus temperature is constant.