nothing, or rotate until it hit stop.
It would not be possible to conduct a simple pendulum experiment at the center of the Earth due to extreme heat and pressure conditions. Additionally, the gravitational force at the center of the Earth would be effectively zero, which is essential for the functioning of a simple pendulum.
Caroline and Jarred asked Mrs.West about how a pendulum works.
The time period of a simple pendulum at the center of the Earth would be constant and not depend on the length of the pendulum. This is because acceleration due to gravity is zero at the center of the Earth, making the time period independent of the length of the pendulum.
Increasing the mass of a pendulum would not change the period of its oscillation. The period of a pendulum only depends on the length of the pendulum and the acceleration due to gravity, but not the mass of the pendulum bob.
Objects in freefall are not weightless; they still have mass and therefore experience the force of gravity. However, in freefall, they are accelerating towards the Earth due to gravity, which gives the sensation of weightlessness as the force of gravity is canceled out by the acceleration.
what industries would benefit the most from a weightless enviornment
It would not be possible to conduct a simple pendulum experiment at the center of the Earth due to extreme heat and pressure conditions. Additionally, the gravitational force at the center of the Earth would be effectively zero, which is essential for the functioning of a simple pendulum.
When a pendulum is released to fall, it changes from Potential energy to Kinetic Energy of a moving object. However, due to friction (ie: air resistance, and the pivot point) and gravity the pendulum's swing will slowly die down. A pendulum gets its kinetic energy from gravity on its fall its equilibrium position which is the lowest point to the ground it can fall, however, even in perfect conditions (a condition with no friction) it can never achieve a swing (amplitude) greater than or equal to its previous swing. Every swing that the pendulum makes, it gradually looses energy or else it would continue to swing for eternity without stopping. Extra: Using special metals that react little to temperature, finding a near mass-less rod to swing the bob (the weight) and placing the pendulum in a vacuum has yielded some very long lasting pendulums. While the pendulum will lose energy with every swing, under good conditions the amount of energy that the pendulum loses can be kept relatively small. Some of the best pendulum clocks can swing well over a million times.
Helium is a gas that is weightless, odourless, and would make a barrel lighter.
Spacesuits are big and bulky, therefore in regular everyday conditions they would be somewhat difficult to move around in. However in a weightless environment, it would be easier as you're floating around.
Caroline and Jarred asked Mrs.West about how a pendulum works.
The time period of a simple pendulum at the center of the Earth would be constant and not depend on the length of the pendulum. This is because acceleration due to gravity is zero at the center of the Earth, making the time period independent of the length of the pendulum.
They actually are weightless, due to the fact there is no gravity in space. However a sky-diver would say he/she feels weightless, but they are experiencing free-fall.
under what conditions an econoy would be operating inside its production possibility frontier?
Increasing the mass of a pendulum would not change the period of its oscillation. The period of a pendulum only depends on the length of the pendulum and the acceleration due to gravity, but not the mass of the pendulum bob.
A longer pendulum will result in a longer period. The clock would go slower.
For a simple pendulum: Period = 6.3437 (rounded) seconds