answersLogoWhite

0

The electric field is constant in a given system when there are no changes in the distribution of charges or the geometry of the system.

User Avatar

AnswerBot

6mo ago

What else can I help you with?

Continue Learning about Physics

What is the relationship between electric potential and electric field in a given system?

In a given system, the electric potential is directly related to the electric field. The electric field is the rate of change of electric potential with respect to distance. In other words, the electric field points in the direction of decreasing potential.


How does the electric field direction change from positive to negative in a given system?

In a given system, the electric field direction changes from positive to negative when the source of the electric field changes its charge from positive to negative.


How to calculate the electric field at a point in a given system?

To calculate the electric field at a point in a given system, you can use the formula: Electric field (E) Force (F) / Charge (q). This formula helps determine the strength and direction of the electric field at a specific point in the system.


Is the electric field zero or nonzero in a region of space if the potential is constant throughout this given region?

In a region of space where the potential is constant, the electric field is zero. This is because the electric field is the gradient of the electric potential, so if the potential is not changing, there is no electric field present.


The potential is constant through a given region of space Is the electrical field zero or non zero?

If the potential is constant through a given region of space, the electric field is zero in that region. This is because the electric field is the negative gradient of the electric potential, so if the potential is not changing, the field becomes zero.

Related Questions

What is the relationship between electric potential and electric field in a given system?

In a given system, the electric potential is directly related to the electric field. The electric field is the rate of change of electric potential with respect to distance. In other words, the electric field points in the direction of decreasing potential.


How does the electric field direction change from positive to negative in a given system?

In a given system, the electric field direction changes from positive to negative when the source of the electric field changes its charge from positive to negative.


How to calculate the electric field at a point in a given system?

To calculate the electric field at a point in a given system, you can use the formula: Electric field (E) Force (F) / Charge (q). This formula helps determine the strength and direction of the electric field at a specific point in the system.


Is the electric field zero or nonzero in a region of space if the potential is constant throughout this given region?

In a region of space where the potential is constant, the electric field is zero. This is because the electric field is the gradient of the electric potential, so if the potential is not changing, there is no electric field present.


The potential is constant through a given region of space Is the electrical field zero or non zero?

If the potential is constant through a given region of space, the electric field is zero in that region. This is because the electric field is the negative gradient of the electric potential, so if the potential is not changing, the field becomes zero.


What is the relationship between voltage and the electric field in a given system?

In a given system, the relationship between voltage and the electric field is that the electric field is directly proportional to the voltage. This means that as the voltage increases, the electric field strength also increases. Conversely, if the voltage decreases, the electric field strength will also decrease.


What is the relationship between voltage and electric field in a given electrical system?

In a given electrical system, the relationship between voltage and electric field is that voltage is the measure of electric potential difference between two points in the system, while electric field is the force per unit charge experienced by a charge at a point in the system. The electric field is directly proportional to the voltage in the system.


What is the process to calculate the maximum electric field strength in a given system?

To calculate the maximum electric field strength in a system, you need to determine the charge distribution and geometry of the system. Then, use the formula E k q / r2, where E is the electric field strength, k is the Coulomb's constant, q is the charge, and r is the distance from the charge. By finding the maximum value of E at any point in the system, you can determine the maximum electric field strength.


What is the relationship between the direction of the e0 electric field and the movement of charged particles in a given system?

The direction of the electric field (E) determines the direction in which charged particles will move in a given system. Charged particles will move in the direction of the electric field if they are positive, and opposite to the direction of the electric field if they are negative.


What is the electric field amplitude formula used to calculate the strength of an electric field at a given point?

The formula to calculate the electric field amplitude at a given point is E k Q / r2, where E is the electric field strength, k is the Coulomb's constant, Q is the charge creating the field, and r is the distance from the charge to the point where the field is being measured.


What is the equation that relates voltage and electric field in a given system?

The equation that relates voltage (V) and electric field (E) in a given system is V E d, where V is the voltage, E is the electric field, and d is the distance between the points where the voltage is measured.


If potential is constant throughout a given region of space can you say that electric field is zero in that region?

No, the electric field does not necessarily have to be zero just because the potential is constant in a given region of space. The electric field is related to the potential by the gradient, so if the potential is constant, the electric field is zero only if the gradient of the potential is zero.