If an electron is released from the nucleus (and not from an electron shell) then it would have been emitted by a neutron in beta decay. In beta-minus decay, a neutral neutron emits an electron and an anti-neutrino and becomes a proton; in beta-plus decay, a proton emits a positron and a neutrino and becomes a neutron.
During beta decay, a neutron is converted into a proton, releasing an electron (beta particle) and an antineutrino from the nucleus. The beta particle is emitted as the neutron decays into a proton, increasing the atomic number of the nucleus.
In beta decay, the electron (or positron) is emitted from the nucleus when a neutron transforms into a proton or vice versa. The electron is released from the nucleus as a result of the decay process, carrying away energy and creating a new element.
The fundamental force responsible for some forms of radioactivity is the weak nuclear force. This force is involved in processes such as beta decay, where a neutron in an atomic nucleus is transformed into a proton, an electron, and an antineutrino.
The beta decay changes the color and texture. The new element that forms is clyropediatica. When clyropediatica forms it leaves behind an odor and is not as light as helium. Also, it is stronger than the metatarcels in the pyroclastic flow when it is over run by the elcaburn.
It is in beta plus decay that we see the positron emitted from the nucleus. (An electron is emitted in beta minus decay.) Within the nucleus of an unstable atom, a proton transforms into a neutron, and a positron is ejected from the nucleus (along with a neutrino). As the nucleus now has one more proton than it did before, its atomic number just went up by one; it is another element.
radioactivity
nucleus is a very complicated region and we known little about thattheoretically a neutron is broken down to a proton and a beta particle during radioactivity so with in nucleus beta particle is a part of neutron.
During beta decay, a neutron is converted into a proton, releasing an electron (beta particle) and an antineutrino from the nucleus. The beta particle is emitted as the neutron decays into a proton, increasing the atomic number of the nucleus.
A beta particle is an electron or a positron emitted from an unstable nucleus during beta decay. Beta decay occurs when a neutron in the nucleus changes into a proton and emits either an electron (beta minus decay) or a positron (beta plus decay) to achieve a more stable configuration.
Beta decay releases a fast-moving electron (beta particle) from a neutron in the nucleus. During beta decay, a neutron is converted into a proton, and the electron and an antineutrino are emitted to conserve charge and energy.
In beta decay, the electron (or positron) is emitted from the nucleus when a neutron transforms into a proton or vice versa. The electron is released from the nucleus as a result of the decay process, carrying away energy and creating a new element.
The latter two particles, the electron and the neutron, are found in the nucleus of an atom. The electron orbits the nucleus in the electron cloud, while the neutron is located alongside protons in the nucleus.
Many particles can be emitted from radioactive decay. We have Internal Conversion in which a nucleus transfers the energy to an electron which then releases it. There is also Isometric Transition which is basically the gamma ray (photon). There is the decay in which a nucleon is emitted. In this scenario we can have an alpha decay (in which an alpha particle decays), a proton emission, a neutron emission, double proton emission (two protons are emitted), spontaneous fission (the nucleus brakes down into two smaller nuclei and/or other particles) and we have the cluster decay (where the nucleus emits a smaller nucleus). There is the beta decay too. There is the Beta decay (electron and electron antineutrino are emitted), positron emission (a positron and an electron neutrino are emitted), electron capture (an electron is captured by the nucleus and a neutrino is emitted), bound state beta decay (the nucleus decays to an electron and an antineutrino but here the electron is not emitted since it is captured into a K-shell), double beta decay (two electrons and two antineutrinos are emitted), double electron capture (the nucleus absorbs two electrons and emits two neutrinos), electron capture with positron emission (an electron is absorbed and a positron is emitted along with two neutrinos), and double positron emission (in which the nucleus emits two positrons and two neutrons).
Electron is the lightest.
Electron capture is the absorption of an electron by an atomic nucleus if that nucleus is neutron poor. An electron is captured, usually from an inner electron shell of that atom, and it will convert a proton in the nucleus into a neutron. We know that a neutron is converted into a proton and an electron in neutron decay, so it might be looked at as something of an opposite nuclear reaction where a proton and an electron combine to form a neutron.
neutron
beta