When a particle is moving in a circular motion at a constant speed, the work done by the particle is zero. This is because work is defined as force applied over a distance in the direction of the force, and in circular motion, the force and displacement are perpendicular to each other, resulting in no work being done.
If displacement of a particle is zero in a uniform circular motion, then the distance travelled by that particle is not zero, kinetic energy is constant, speed is constant and work done is zero
The work done by a body moving along a circular path is zero if the force is perpendicular to the direction of motion, such as in the case of centripetal force. This is because the displacement is perpendicular to the force. If there is a component of the force in the direction of the motion, work is done, calculated as the dot product of the force and displacement vectors.
The work done on a satellite in a circular orbit around Earth is zero because the gravitational force acting on the satellite is perpendicular to the direction of motion, so no work is done to maintain the orbit.
Here a centripetal force provided by electrostatic force of attraction acts on the electron towards the centre of orbit but motion is along the tangent to the circular orbit at ecah point. As force and displacement are in mutually perpendicular directions at each point, the work done is zero. E V SHAKKEER HUSSAIN
Moving objects work with kinetic energy, which is the energy of motion. When an object is in motion, it possesses kinetic energy that is dependent on its mass and speed. Kinetic energy helps to quantify the amount of work that can be done by a moving object.
If displacement of a particle is zero in a uniform circular motion, then the distance travelled by that particle is not zero, kinetic energy is constant, speed is constant and work done is zero
The work done by a body moving along a circular path is zero if the force is perpendicular to the direction of motion, such as in the case of centripetal force. This is because the displacement is perpendicular to the force. If there is a component of the force in the direction of the motion, work is done, calculated as the dot product of the force and displacement vectors.
To sign "for example" in ASL, you can fingerspell F-O-R followed by the sign for EXAMPLE, which is done by moving your index finger in a circular motion in front of your chest.
The work done on a satellite in a circular orbit around Earth is zero because the gravitational force acting on the satellite is perpendicular to the direction of motion, so no work is done to maintain the orbit.
No. Only if you are applying the same amount of force then there is no motion. If you are applying more force (the object is moving) then there is work being done.
Here a centripetal force provided by electrostatic force of attraction acts on the electron towards the centre of orbit but motion is along the tangent to the circular orbit at ecah point. As force and displacement are in mutually perpendicular directions at each point, the work done is zero. E V SHAKKEER HUSSAIN
Moving objects work with kinetic energy, which is the energy of motion. When an object is in motion, it possesses kinetic energy that is dependent on its mass and speed. Kinetic energy helps to quantify the amount of work that can be done by a moving object.
Work is zero when the force is perpendicular to the direction of motion, as it is, for example, in a circular gravitational orbit.
In a complete circular orbit of an electron around a nucleus, the work done by the field of the nucleus is zero. This is because the force is always perpendicular to the direction of motion, so there is no displacement along the direction of the force, resulting in no work done. If the orbit is elliptical, there would be work done by the field of the nucleus due to the non-zero component of the force parallel to the direction of motion during the orbital motion.
Zero. W = F* d cos (Theta) W = Tension * displacement * cos (90) The force is perpendicular to the objects motion (or displacement of the object) W = T * d * 0 W= 0
Zero. This is because when a body when around in a circle, a centripetal force acts on the particle to keep it at that fixed distance from the centre. At each point, the force and the displacement are perpendicular to each other. Hence no work is done. The answer is NOT Zero! A Force is required in the direction of motion around the circle. At every point (an infinite number of them) there must be a Force PERPENDICULAR to the Centrifugal and Centripetal Forces or the object would not move. Therefore the amount of work done is the product of that FORCE times the circumference of the circular path, if only considering one revolution.
If the force moving an object points partially in the opposite direction of the object's motion, work is considered to be negative. This is because the force is acting against the direction of motion, reducing the overall work done on the object.