When air resistance balances the weight of an object that is falling, the object has reached terminal velocity. At this point, the object falls at a constant speed without accelerating further due to the opposing forces being balanced.
The maximum velocity reached by a falling object when the resistance of the medium is equal to the force due to gravity is called terminal velocity. At terminal velocity, the object no longer accelerates and reaches a constant speed as the drag force balances out the force of gravity acting on the object.
In that case, it is said to have achieved terminal velocity.
When a falling object has reached terminal velocity, it no longer accelerates due to air resistance matching the force of gravity. At this point, the object continues to fall at a constant speed without gaining any additional velocity.
The maximum velocity reached by a falling object when air resistance is equal to gravitational force is called terminal velocity. At this point, the net force on the object is zero, resulting in constant velocity. The object will not accelerate further due to the balancing forces.
When a falling object has stopped accelerating, it has reached its terminal velocity. At this point, the force of air resistance acting on the object is equal to the force of gravity pulling it downward, resulting in a balanced force and a constant velocity.
In free fall, when the air resistance is equal to the weight of the falling object, we say that the object has reached ________ velocity.
The maximum velocity reached by a falling object when the resistance of the medium is equal to the force due to gravity is called terminal velocity. At terminal velocity, the object no longer accelerates and reaches a constant speed as the drag force balances out the force of gravity acting on the object.
Constant
As a falling object accelerates through air, its speed increases and air resistance increases. While gravity pulls the object down, we find that air resistance is trying to limit the object's speed. Air resistance reduces the acceleration of a falling object. It would accelerate faster if it was falling in a vacuum.
In that case, it is said to have achieved terminal velocity.
When a falling object has reached terminal velocity, it no longer accelerates due to air resistance matching the force of gravity. At this point, the object continues to fall at a constant speed without gaining any additional velocity.
The maximum velocity reached by a falling object when air resistance is equal to gravitational force is called terminal velocity. At this point, the net force on the object is zero, resulting in constant velocity. The object will not accelerate further due to the balancing forces.
It reduces the acceleration of the falling object due to friction.
When a falling object has stopped accelerating, it has reached its terminal velocity. At this point, the force of air resistance acting on the object is equal to the force of gravity pulling it downward, resulting in a balanced force and a constant velocity.
Its called terminal velocity
The greatest speed reached by a falling object is known as terminal velocity. This is when the gravitational force pulling the object down is equal to the air resistance acting against it, resulting in a constant speed. Terminal velocity for a human falling through the atmosphere is around 120 mph (200 km/h).
acceleration