In what pattern does the flow of energy in the ecosystem take place
Momentum is conserved in a collision. If two cars have the same mass and are traveling at the same speed and collide headfirst, the momentum of both cars cancel each other out and they will be motionless. If one has greater speed or mass than the other, it will still have the difference in momentum after the collision.
Mechanical energy is not always conserved. It can be converted into other forms of energy, such as heat or sound, through processes like friction or collisions. This means that the total amount of mechanical energy in a system may change over time, making it not always conserved.
The sum of potential and kinetic energy is called "mechanical energy". This is NOT conserved, though - unless you consider the microscopic scale, in which case (for example) heat energy is a type of kinetic energy. In this case, the sum is simply the total energy, and the total energy IS conserved.
Mechanical energy is conserved in situations where only conservative forces are present, such as gravity or spring forces. In these cases, the total mechanical energy (kinetic energy + potential energy) of a system remains constant as long as no external work is done.
When only mechanical energy acts on an object, the total mechanical energy of the system is conserved. This means that the sum of the object's kinetic and potential energies remains constant, assuming no external forces or sources of energy are involved.
No. Total energy is always conserved, but not so mechanical energy.
Momentum is conserved in a collision. If two cars have the same mass and are traveling at the same speed and collide headfirst, the momentum of both cars cancel each other out and they will be motionless. If one has greater speed or mass than the other, it will still have the difference in momentum after the collision.
Mechanical energy is not always conserved. It can be converted into other forms of energy, such as heat or sound, through processes like friction or collisions. This means that the total amount of mechanical energy in a system may change over time, making it not always conserved.
The sum of potential and kinetic energy is called "mechanical energy". This is NOT conserved, though - unless you consider the microscopic scale, in which case (for example) heat energy is a type of kinetic energy. In this case, the sum is simply the total energy, and the total energy IS conserved.
Mechanical energy is conserved in situations where only conservative forces are present, such as gravity or spring forces. In these cases, the total mechanical energy (kinetic energy + potential energy) of a system remains constant as long as no external work is done.
When only mechanical energy acts on an object, the total mechanical energy of the system is conserved. This means that the sum of the object's kinetic and potential energies remains constant, assuming no external forces or sources of energy are involved.
Mechanical energy is equal to potential energy plus kinetic energy in a closed system. The total mechanical energy is conserved.
In an elastic collision between two objects, energy is conserved because the total kinetic energy before the collision is equal to the total kinetic energy after the collision. This means that no energy is lost or gained during the collision, and it is transferred between the objects without any loss.
The Momentum from each of the objects colliding is added together, and the collision follows a course based on the sum.Example:Object A is going 25 (Units) SouthObject B is going 20 (Units) NorthEnd Result: 5 Units SouthThe Energy from each of the objects is transferred to sound, light(sometimes), heat, and mechanical energy.
The energy of the momentum in a collision is conserved through the following occurrences; movement of vehicle(s) after impact, deformation of the vehicle(s) or objects hit, heat and sound.
Mechanical energy is equal to potential energy plus kinetic energy in a closed system. The total mechanical energy is conserved.
Mechanical energy is equal to potential energy plus kinetic energy in a closed system. The total mechanical energy is conserved.