Potential energy is highest at the dead top of the highest point on the roller coaster. It is lowest at the lowest point. Kinetic energy (motion energy) is highest at the point where the velocity is highest. This depends on the design. A good guess is dead bottom of the longest fall, but on a complex coaster ride there are other possibilities. Also, air resistance and friction can change this.
The potential energy is highest at the top of the first hill or peak of the roller coaster because it is at its maximum height above the ground. As the roller coaster descends, potential energy is converted into kinetic energy as the car gains speed.
On a pendulum, the greatest potential energy is at the highest point of the swing on either side, and the greatest kinetic energy is at the bottom of the swing. On a roller coaster, the greatest potential energy is at the top of a hill, and the greatest kinetic energy is at the bottom of the hill.
Potential energy becomes kinetic energy when the car begins its downward descent from the top of one of the rollercoaster's peaks. It accumlates potential energy as it is lifted to the first and highest peak. It regains some of its lost potential energy each time it re-ascends one of the lower peaks, then loses potential and gains kinetic energy as it drops again.
A roller coaster increases kinetic energy when it is going downhill, as gravity is pulling it down and accelerating it. The potential energy is converted into kinetic energy as the roller coaster gains speed.
Yes. At the top of the hill, the potential energy is at a maximum. As the coaster is rolling down the hill, the potential energy (or energy due to the coaster's position or height), is converted into kinetic energy (as the roller coaster is rushing downhill). Hope this helps, physicsisland@hotmail.com
When the roller coaster is at its highest position and is not moving then its potential energy is highest
When the roller coaster is at its highest position and is not moving then its potential energy is highest
The potential energy is highest at the top of the first hill or peak of the roller coaster because it is at its maximum height above the ground. As the roller coaster descends, potential energy is converted into kinetic energy as the car gains speed.
When the roller coaster - or any object, for that matter - is at its highest point, it has more potential energy than when it is at a lower point.
It is when the car is at its highest point.
On a pendulum, the greatest potential energy is at the highest point of the swing on either side, and the greatest kinetic energy is at the bottom of the swing. On a roller coaster, the greatest potential energy is at the top of a hill, and the greatest kinetic energy is at the bottom of the hill.
Potential energy is highest at the top of a roller coaster when the cart has the highest elevation. As the cart descends, potential energy is converted into kinetic energy, reaching its maximum at the bottom. The relationship between potential and kinetic energy is a transfer of energy, as one decreases while the other increases.
Kinetic energy begins changing to potential energy at the top of a roller coaster's highest point, typically referred to as the peak. At this point, the coaster's speed decreases as it moves upward due to the force of gravity, leading to a conversion of kinetic energy to potential energy.
Potential energy becomes kinetic energy when the car begins its downward descent from the top of one of the rollercoaster's peaks. It accumlates potential energy as it is lifted to the first and highest peak. It regains some of its lost potential energy each time it re-ascends one of the lower peaks, then loses potential and gains kinetic energy as it drops again.
At the tallest point on the track. Potential energy is given by U(Which is potential energy) = mass times height time gravitational constant. You can't change the gravitational constant, or the mass of the roller coaster car. So you have to change the height. PE=mgh so more the height and the mass the more PE
Any object has maximum gravitational potential energy when it is at its highest position.
The cars of a roller coaster reach their maximum kinetic energy when at the bottom of their path.