When the load moves farther than the effort, it means that the output force has traveled a greater distance than the input force applied. This typically occurs in situations where the mechanical advantage is in favor of the load, resulting in a larger displacement for the load compared to the effort.
In a class 2 lever, the effort required to lift a load is greater than the weight of the load because the load is between the fulcrum and the effort. This means the effort arm is longer than the load arm, which increases the mechanical advantage of the lever, making it easier to lift heavy loads.
A fixed pulley requires more effort than the load to lift it from the ground. This type of pulley changes the direction of the force applied but does not provide any mechanical advantage in terms of reducing the effort needed to lift the load.
The three types of pulleys are fixed pulley, movable pulley, and compound pulley. Fixed pulleys are attached to a stationary object, movable pulleys move along with the load, and compound pulleys combine both fixed and movable pulleys to provide mechanical advantage.
In a third-class lever, the effort is between the load and the fulcrum. This positioning always results in a mechanical advantage of less than 1 because the effort arm is shorter than the load arm. This means that the input force (effort) is greater than the output force (load).
The effort required to lift a load of 360N will depend on factors such as the angle and direction of the lift, as well as the presence of any mechanical advantage (such as using a lever or a pulley system). In general, the effort required would be equivalent to the weight of the load being lifted in a purely vertical direction.
Range of Motion The load moves shorter distance than the effort.
First-class levers have the fulcrum placed between the load and the effort, as in the seesaw, crowbar, and balance scale. If the two arms of the lever are of equal length, as with the balance scale, the effort must be equal to the load. If the effort arm is longer than the load arm, as in the crowbar, the effort travels farther than the load and is less than the load.Second-class levers have the load between the effort and the fulcrum. A wheelbarrow is a second-class lever. The wheel's axle is the fulcrum, the handles take the effort, and the load is placed between them. The effort always travels a greater distance and is less than the load.Third-class levers have the effort placed between the load and the fulcrum. The effort always travels a shorter distance and must be greater than the load. A hammer acts as a third-class lever when it is used to drive in a nail: the fulcrum is the wrist, the effort is applied through the hand, and the load is the resistance of the wood. Another example of a third-class lever is the human forearm: the fulcrum is the elbow, the effort is applied by the biceps muscle, and the load is in the hand.Refer to link below for more information.
The effort and the load on the muscle are rarely equal. If the effort is less than the load, the hand will not be able to move the object. If the effort is more than the load, the hand will be able to move the object at a constant acceleration. If the effort and load are equal, then either the object will move at a constant velocity or it will not be moving at all.
This will occur if the fulcrum is closer to the load than the effort
In a class 2 lever, the effort required to lift a load is greater than the weight of the load because the load is between the fulcrum and the effort. This means the effort arm is longer than the load arm, which increases the mechanical advantage of the lever, making it easier to lift heavy loads.
A fixed pulley requires more effort than the load to lift it from the ground. This type of pulley changes the direction of the force applied but does not provide any mechanical advantage in terms of reducing the effort needed to lift the load.
it requires more energy to pull because the load is heavier than the effort.
The three types of pulleys are fixed pulley, movable pulley, and compound pulley. Fixed pulleys are attached to a stationary object, movable pulleys move along with the load, and compound pulleys combine both fixed and movable pulleys to provide mechanical advantage.
The effort-to-load force in a first class lever is decreased when the distance between the effort and the fulcrum is less than the distance between the fulcrum and the load.
Because the load is always between the effort and the fulcrum, so the effort arm is always longer than the load arm.
In a third-class lever, the effort is between the load and the fulcrum. This positioning always results in a mechanical advantage of less than 1 because the effort arm is shorter than the load arm. This means that the input force (effort) is greater than the output force (load).
The effort required to lift a load of 360N will depend on factors such as the angle and direction of the lift, as well as the presence of any mechanical advantage (such as using a lever or a pulley system). In general, the effort required would be equivalent to the weight of the load being lifted in a purely vertical direction.