Because there is an equal and opposite force pulling you down: gravity.
When standing on the ground, the Earth exerts a force equal to your weight in the downward direction (gravitational force) and you exert an equal force in the upward direction on the Earth (reaction force) as per Newton's Third Law of Motion.
Examples of normal force include the force exerted by a surface to support an object placed on it, such as the force exerted by the ground on a person standing, or the force exerted by a bookshelf on a book placed on it.
Because your feet are not accelerating, the force exerted by the floor upon your feet must be exactly the same as the force exerted by your feet on the floor. If you are standing, the amount of force exerted by your feet, and thus the amount of force exerted by the floor, is equivalent to your weight.
The force that causes you to move upward when you jump into the air is the normal force exerted by the ground on your feet. This force opposes the force of gravity acting on your body, allowing you to overcome gravity and move upward.
The upward force exerted on an object in a fluid is buoyancy.
When standing on the ground, the Earth exerts a force equal to your weight in the downward direction (gravitational force) and you exert an equal force in the upward direction on the Earth (reaction force) as per Newton's Third Law of Motion.
Examples of normal force include the force exerted by a surface to support an object placed on it, such as the force exerted by the ground on a person standing, or the force exerted by a bookshelf on a book placed on it.
Because your feet are not accelerating, the force exerted by the floor upon your feet must be exactly the same as the force exerted by your feet on the floor. If you are standing, the amount of force exerted by your feet, and thus the amount of force exerted by the floor, is equivalent to your weight.
The force that causes you to move upward when you jump into the air is the normal force exerted by the ground on your feet. This force opposes the force of gravity acting on your body, allowing you to overcome gravity and move upward.
The upward force exerted on an object in a fluid is buoyancy.
The force is called buoyant force and it is equal to the weight of the fluid displaced by the object.
As the elevator moves upward, the reading on the scale will temporarily increase. This is because the scale measures the force exerted by the person standing on it, which includes their weight and an additional force due to the upward acceleration of the elevator.
Buoyancy is the upward force exerted by water and other fluids on an object placed in them. This force is a result of the pressure difference between the top and bottom of the object, causing it to float or rise.
Forces are balanced in a standing aeroplane. The force of gravity acting downward is counteracted by the normal force exerted by the ground, resulting in equilibrium. This allows the plane to remain stationary on the ground.
buoyant force
buoyancy
The force of gravity has the greatest magnitude on you as you accelerate upward in an elevator.