increase the strenght of the magnetic field. :)
Increasing the strength of the magnetic field passing through the loop, increasing the number of turns in the wire loop, or increasing the speed at which the magnetic field changes can all increase the current in a stationary wire loop through Faraday's law of electromagnetic induction.
The circular loop of wire carrying current will align itself in a plane perpendicular to the direction of the magnetic field created by the current flowing through the loop. This is a result of the magnetic force exerted on the current-carrying loop in the presence of the magnetic field.
The magnitude of induced current in a wire loop when exposed to a changing magnetic field is determined by factors such as the strength of the magnetic field, the rate of change of the magnetic field, the number of turns in the wire loop, and the resistance of the wire.
Only while the magnet is entering or leaving the loop. If you hold it still, no current is generated. The same goes for a longer magnet where the loop is being moved, but the magnet always remains inside the loop; no current.
When an electric current runs through a loop of wire, it generates a magnetic field around the wire. This phenomenon is known as electromagnetism.
why, if the same current flows in a wire coil and a single loop, the magnetic field inside the coil stronger than the field inside the loop
Increasing the strength of the magnetic field passing through the loop, increasing the number of turns in the wire loop, or increasing the speed at which the magnetic field changes can all increase the current in a stationary wire loop through Faraday's law of electromagnetic induction.
The circular loop of wire carrying current will align itself in a plane perpendicular to the direction of the magnetic field created by the current flowing through the loop. This is a result of the magnetic force exerted on the current-carrying loop in the presence of the magnetic field.
The magnitude of induced current in a wire loop when exposed to a changing magnetic field is determined by factors such as the strength of the magnetic field, the rate of change of the magnetic field, the number of turns in the wire loop, and the resistance of the wire.
Only while the magnet is entering or leaving the loop. If you hold it still, no current is generated. The same goes for a longer magnet where the loop is being moved, but the magnet always remains inside the loop; no current.
moving a loop of wire through a magnetic Field. The rotation of a coil of copper wire trough a magnetic field changes magnetic field as "seen" from the coil inducing an alternating current.
No it will not. In order to get electrical activity you need motion. Either the magnet or the wire must move.
When an electric current runs through a loop of wire, it generates a magnetic field around the wire. This phenomenon is known as electromagnetism.
Circuit
Faraday says you will induce a current in the wire.
Ampere's law states that the magnetic field around a closed loop is directly proportional to the current passing through the loop. This law is used to calculate the magnetic field strength around a current-carrying wire by integrating the magnetic field along a closed loop surrounding the wire.
A current is induced in the conductor by the moving magnetic field (relative to the wire, the field is moving) I guess induction might be the term you are looking for.Another AnswerMoving a magnet through a loop of wire will induce a voltage, not a current, into a coil. If the coil forms a closed loop, then a current will result. But it's a voltage that's being induced, not a current -the current is merely the result of that voltage.