Electrons are found in electron clouds, which are ouside of the nucleus.
To determine the electric field in a given region, you can use the formula for electric field strength, which is E F/q, where E is the electric field strength, F is the force acting on a charge, and q is the charge. By calculating the force acting on a charge in the region and dividing it by the charge, you can find the electric field strength in that region.
To find the electric potential at a point in a given electric field, you can use the formula V k Q / r, where V is the electric potential, k is the Coulomb's constant, Q is the charge creating the electric field, and r is the distance from the charge to the point where you want to find the potential.
To find the electric potential in a given system, you can use the formula V kQ/r, where V is the electric potential, k is the Coulomb's constant, Q is the charge, and r is the distance from the charge. Calculate the electric potential at different points in the system by plugging in the values for charge and distance.
The electric charge of an antineutron is zero, as it is an antiparticle of a neutron which has no electric charge.
To calculate the electric potential of a point charge, you can use the formula V kq/r, where V is the electric potential, k is Coulomb's constant (8.99 x 109 Nm2/C2), q is the charge of the point charge, and r is the distance from the point charge to the point where you want to find the electric potential.
u can find it in africa
To determine the electric field in a given region, you can use the formula for electric field strength, which is E F/q, where E is the electric field strength, F is the force acting on a charge, and q is the charge. By calculating the force acting on a charge in the region and dividing it by the charge, you can find the electric field strength in that region.
To find the electric potential at a point in a given electric field, you can use the formula V k Q / r, where V is the electric potential, k is the Coulomb's constant, Q is the charge creating the electric field, and r is the distance from the charge to the point where you want to find the potential.
To find the electric potential in a given system, you can use the formula V kQ/r, where V is the electric potential, k is the Coulomb's constant, Q is the charge, and r is the distance from the charge. Calculate the electric potential at different points in the system by plugging in the values for charge and distance.
The electric charge of an antineutron is zero, as it is an antiparticle of a neutron which has no electric charge.
To calculate the electric potential of a point charge, you can use the formula V kq/r, where V is the electric potential, k is Coulomb's constant (8.99 x 109 Nm2/C2), q is the charge of the point charge, and r is the distance from the point charge to the point where you want to find the electric potential.
The kinds of electric charge are positive charge and negative charge
A stationary electric charge is called an electric static charge.
An electron has a negative electric charge.
Every electric charge is surrounded by an electric field.
The electric charge of a muon is -1 elementary charge, which is the same as the charge of an electron.
Rate of change of electric charge produces magnetic charge. Unit of electric charge is coulomb C, unit of magnetic charge would be Ampere-meter.