answersLogoWhite

0

In a scissor, the fulcrum is the pivot point around which the scissor blade rotates, the resistance force is the force opposing the cutting action exerted by the material being cut, and the effort force is the force applied by the user to bring the blades together.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Physics

What lever has the resistance force between the effort force and the fulcrum?

In a lever, the resistance force is located between the effort force and the fulcrum. This setup creates a mechanical advantage that allows a smaller effort force to overcome a larger resistance force. The position and distance of the resistance force from the fulcrum determine the effectiveness of the lever system.


What does the machanical advantage of a first-class lever depend apon?

The mechanical advantage of a first-class lever depends on the relative distances between the effort force, the fulcrum, and the resistance force. The mechanical advantage is calculated as the ratio of the distance from the fulcrum to the effort force to the distance from the fulcrum to the resistance force.


What characteristics distinguish levers as first class second class or third class?

The distinguishing characteristic of first-class levers is that the fulcrum lies between the effort force and the resistance force. Second-class levers have the resistance force between the fulcrum and the effort force. Third-class levers have the effort force between the fulcrum and the resistance force.


What are the fulcrum resistance and effort?

A fulcrum is the fixed point around which a lever pivots. The resistance is the force opposing the movement of the lever, while the effort is the force applied to move the lever. The position of the fulcrum relative to the resistance and effort forces determines the mechanical advantage of the lever system.


What is the lever which the effort force is between the resistance force and fulcrum?

This is a second-class lever. The resistance force is located between the effort force and the fulcrum in this type of lever. An example of a second-class lever is a wheelbarrow.

Related Questions

What lever has the resistance force between the effort force and the fulcrum?

In a lever, the resistance force is located between the effort force and the fulcrum. This setup creates a mechanical advantage that allows a smaller effort force to overcome a larger resistance force. The position and distance of the resistance force from the fulcrum determine the effectiveness of the lever system.


Class levers have the resistance force between the effort force and the fulcrum?

Class 2.


What does the machanical advantage of a first-class lever depend apon?

The mechanical advantage of a first-class lever depends on the relative distances between the effort force, the fulcrum, and the resistance force. The mechanical advantage is calculated as the ratio of the distance from the fulcrum to the effort force to the distance from the fulcrum to the resistance force.


What characteristics distinguish levers as first class second class or third class?

The distinguishing characteristic of first-class levers is that the fulcrum lies between the effort force and the resistance force. Second-class levers have the resistance force between the fulcrum and the effort force. Third-class levers have the effort force between the fulcrum and the resistance force.


What are the fulcrum resistance and effort?

A fulcrum is the fixed point around which a lever pivots. The resistance is the force opposing the movement of the lever, while the effort is the force applied to move the lever. The position of the fulcrum relative to the resistance and effort forces determines the mechanical advantage of the lever system.


What is the lever which the effort force is between the resistance force and fulcrum?

This is a second-class lever. The resistance force is located between the effort force and the fulcrum in this type of lever. An example of a second-class lever is a wheelbarrow.


Are scissors a first class lever?

yea because the fulcrum in that nail in the middle of this scissor and the effort, or input force, is you using the handles and the the load is the end blades of the scissor. First class is when the fulcrum is in the middle, and the load and effort are on the other sidesno


Where is the fulcrum resistance force and the effort force on a shovel?

The effort force is applied at the handle of the shovel. The fulcrum is where your other hand goes, lower down the shaft, and the fulcrum resistance would be where the load goes on the shovel, I.E the flat bit that you hit people with!


What lever has resistance between the axis fulcrum and the force effort?

A second-class lever has resistance between the fulcrum and the effort force. In this type of lever, the load is situated between the fulcrum and the effort, which allows for increased force output at the expense of distance traveled. Examples include nutcrackers and wheelbarrows.


What lever has resistance between the axis (fulcrum) and the force (effort)?

In a second-class lever, the resistance is between the axis (fulcrum) and the effort. Examples include a wheelbarrow or a nutcracker.


The resistance force effort force and the fulcrum of a can opener?

In a can opener, the resistance force is the force required to open the can, applied by the person using the can opener. The effort force is the force exerted by the person to operate the can opener. The fulcrum is the pivot point around which the can opener rotates to open the can.


What. Are the parts of a lever?

Fulcrum and a bar or plank.load fulcrum effortFulcrumthe parts of the lever are resistance,effort and the fulcrum