answersLogoWhite

0

Newton's second law relates acceleration to mass and force: F = ma, where F is the force applied to an object, m is the mass of the object, and a is the resulting acceleration. The law states that the acceleration of an object is directly proportional to the force applied to it and inversely proportional to its mass.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Physics

What law relates force to acceleration?

Newton's second law of motion relates force to acceleration. It states that the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass. Mathematically, it can be expressed as F = ma, where F is the force, m is the mass of the object, and a is the acceleration.


How does changing force and mass affects acceleration?

Increasing force or decreasing mass will lead to greater acceleration, as per Newton's second law of motion (F = ma). This is because acceleration is directly proportional to force and inversely proportional to mass. More force applied to an object or less mass of the object will result in a higher acceleration.


What relates force mass and acceleration?

The relationship between force, mass, and acceleration is described by Newton's second law of motion: F = ma. This equation states that the force acting on an object is directly proportional to its mass and the acceleration produced. In other words, the greater the force applied to an object, the greater its acceleration will be, assuming a constant mass.


How force affects mass and acceleration?

force is directly proportional to acceleration and acceleration is inversely proportional to mass of the body


What happens to the force when either mass or acceleration is increased?

I'm guessing this question relates to the formula Force=mass*acceleration. in this case if the mass stays the same, then Force and acceleration are directly proportional (if one goes up, then by mathematical law, the other one also has to)

Related Questions

How does force affects mass and acceleration?

Increasing force increases acceleration but increasing mass decreases acceleration.


Newtons Second Law of Motion relates force and acceleration?

Mass


What law relates force to acceleration?

Newton's second law of motion relates force to acceleration. It states that the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass. Mathematically, it can be expressed as F = ma, where F is the force, m is the mass of the object, and a is the acceleration.


How does changing force and mass affects acceleration?

Increasing force or decreasing mass will lead to greater acceleration, as per Newton's second law of motion (F = ma). This is because acceleration is directly proportional to force and inversely proportional to mass. More force applied to an object or less mass of the object will result in a higher acceleration.


What relates force mass and acceleration?

The relationship between force, mass, and acceleration is described by Newton's second law of motion: F = ma. This equation states that the force acting on an object is directly proportional to its mass and the acceleration produced. In other words, the greater the force applied to an object, the greater its acceleration will be, assuming a constant mass.


How force affects mass and acceleration?

force is directly proportional to acceleration and acceleration is inversely proportional to mass of the body


How does mass of an object affects it's acceleration?

It depends on the force. The acceleration due to gravity (for small objects) is essentially independent of mass, although air friction may be worse for very small objects. If, however, you have a constant force. F = MA Force = Mass * Acceleration. Divide each side by mass and you get: Acceleration = (Force / Mass) So, for constant force, the more mass an object has, the less acceleration. Or, you could say that for constant force, the acceleration is inversely proportional to the mass.


What happens to the force when either mass or acceleration is increased?

I'm guessing this question relates to the formula Force=mass*acceleration. in this case if the mass stays the same, then Force and acceleration are directly proportional (if one goes up, then by mathematical law, the other one also has to)


Explain how a football and a soccerball can have different accelerations if pushed by the same force?

Force = mass x acceleration, therefore, acceleration = force / mass.Force = mass x acceleration, therefore, acceleration = force / mass.Force = mass x acceleration, therefore, acceleration = force / mass.Force = mass x acceleration, therefore, acceleration = force / mass.


What is the formula that relates the force acting on an object (mg) and the acceleration of the object (ma)?

The formula that relates the force acting on an object (mg) and the acceleration of the object (ma) is Newton's second law of motion, which states that force (F) is equal to mass (m) multiplied by acceleration (a), expressed as F ma.


How are the mass of an object and the objects acceleration related?

The equation F=ma proves that mass and acceleration are related. Force = mass x acceleration Mass is directly related to acceleration, therefore if one goes up then the other must go down.


What creates force?

Mass and acceleration creates force (Mass*Acceleration=Force).