the object that has the most potential energy is whatever is not moving but is ready to move like flinging a rubber band let's say you holding it back now it has energy stored in it then once you let go and it flings it has kinetic energy which is a different story but that is my answer
F.Y.I kinetic energy is when it energy is being used and dies down back into potential .......... get it now ;);0
The energy level shell farthest from the nucleus would have the greatest potential energy. As electrons move farther from the nucleus, their potential energy increases due to the increasing distance from the positive charge of the nucleus. This is in line with the understanding that potential energy decreases as an object gets closer to a source of attraction.
the box when it is inclined will have greatest potential energy on the top corners only.
The potential energy of a swing is greatest at the highest point of its arc. This is where the swing has the most distance from the ground and the most potential to do work if released.
The greatest type of energy at the bottom of a swing's path is kinetic energy, which is the energy of motion. The potential energy at the top of the swing is converted to kinetic energy as the swing reaches the bottom of its arc.
The greatest influence on the potential energy of an object is its mass and height above a reference point, such as the ground. The potential energy increases with an increase in mass and height because there is more gravitational potential energy stored in the object.
The energy level shell farthest from the nucleus would have the greatest potential energy. As electrons move farther from the nucleus, their potential energy increases due to the increasing distance from the positive charge of the nucleus. This is in line with the understanding that potential energy decreases as an object gets closer to a source of attraction.
Potential energy is the amount of energy stored in an object due to its height. This is maximum for an object which has maximum height and vice versa. So the most potential energy would be for object with greatest height.
the box when it is inclined will have greatest potential energy on the top corners only.
On a pendulum, the greatest potential energy is at the highest point of the swing on either side, and the greatest kinetic energy is at the bottom of the swing. On a roller coaster, the greatest potential energy is at the top of a hill, and the greatest kinetic energy is at the bottom of the hill.
The acorn has the greatest potential energy at the highest point in its fall, where it is furthest from the ground. As it falls, this potential energy converts into kinetic energy, which is greatest just before it hits the ground. At this moment, the acorn's speed is at its maximum, resulting in the highest kinetic energy.
The potential energy of a swing is greatest at the highest point of its arc. This is where the swing has the most distance from the ground and the most potential to do work if released.
The car that is highest has the most potential energy.
The greatest type of energy at the bottom of a swing's path is kinetic energy, which is the energy of motion. The potential energy at the top of the swing is converted to kinetic energy as the swing reaches the bottom of its arc.
The greatest influence on the potential energy of an object is its mass and height above a reference point, such as the ground. The potential energy increases with an increase in mass and height because there is more gravitational potential energy stored in the object.
As the swing moves, potential energy changes into kinetic energy. At the highest position all energy is gravitational potential energy as the swing has stopped at its highest position. Then the energy is converted back to kinetic energy, KE as it descends.
A falling object has the greatest potential energy when it is highest, at the beginning of the fall. It has the greatest kinetic energy when it is at its lowest, at the end of the fall. Without taking friction or air resistance into account, the beginning potential energy is the same as the final kinetic energy. If friction is considered, the beginning potential energy is greater.
A spring has maximum potential energy at maximum displacement from equilibrium. This means that the greatest potential energy will occur when a spring is stretched as far as it will stretch or compressed as tightly as it will compress. In an oscillating system, where an object attached to a spring is moving back and forth at a given frequency, the object will oscillate about the equilibrium point, and the potential energy of the system will be greatest (and equal) when the object is farthest from equilibrium on either side.