Whoever is the higher.
The clock pendulum and swings are at their highest potential energy at the highest point of their swing when they are farthest from the ground. They are at their highest kinetic energy at their lowest point of their swing when they have the most speed. This is because potential energy is highest when the object is highest, and kinetic energy is highest when the object is moving the fastest.
The potential energy (PE) of a pendulum is highest at the highest point of its swing, when it is at its maximum height. At this point, all of the energy is in the form of potential energy, with no kinetic energy present.
Yes, a swinging pendulum has both kinetic energy and potential energy. At the highest point of the swing, the potential energy is highest, and at the lowest point, the kinetic energy is highest. The total energy remains constant throughout the motion due to conservation of energy.
the box when it is inclined will have greatest potential energy on the top corners only.
The pendulum's potential energy is highest at the highest point of its swing and lowest at the lowest point. As the pendulum swings, potential energy is converted to kinetic energy and back again.
When the roller coaster is at its highest position and is not moving then its potential energy is highest
When the roller coaster is at its highest position and is not moving then its potential energy is highest
The clock pendulum and swings are at their highest potential energy at the highest point of their swing when they are farthest from the ground. They are at their highest kinetic energy at their lowest point of their swing when they have the most speed. This is because potential energy is highest when the object is highest, and kinetic energy is highest when the object is moving the fastest.
The potential energy (PE) of a pendulum is highest at the highest point of its swing, when it is at its maximum height. At this point, all of the energy is in the form of potential energy, with no kinetic energy present.
Yes, a swinging pendulum has both kinetic energy and potential energy. At the highest point of the swing, the potential energy is highest, and at the lowest point, the kinetic energy is highest. The total energy remains constant throughout the motion due to conservation of energy.
-- If you're talking about a pendulum, then the potential energy is highest and kinetic energy is zero at the ends of the swing, and potential energy is lowest and kinetic energy is highest in the middle of the swing. -- If you're not talking about a pendulum, then the preceding may be completely wrong.
The potential energy is highest at the top of the first hill or peak of the roller coaster because it is at its maximum height above the ground. As the roller coaster descends, potential energy is converted into kinetic energy as the car gains speed.
the box when it is inclined will have greatest potential energy on the top corners only.
The car that is highest has the most potential energy.
As the swing moves, potential energy changes into kinetic energy. At the highest position all energy is gravitational potential energy as the swing has stopped at its highest position. Then the energy is converted back to kinetic energy, KE as it descends.
The pendulum's potential energy is highest at the highest point of its swing and lowest at the lowest point. As the pendulum swings, potential energy is converted to kinetic energy and back again.
Gravitational potential energy is highest at the highest point of the pendulum's swing, usually at the top of its arc. At this point, the pendulum possesses the maximum potential energy stored due to its position in the Earth's gravitational field.