Atomic absorption lines are very narrow because they result from the absorption of light by individual atoms at specific energy levels. This absorption occurs at precise wavelengths corresponding to the energy differences between the atom's electron orbits. The narrowness of the lines is due to the limited number of possible energy transitions within an atom, resulting in distinct and well-defined absorption peaks.
Because it is an absorption spectrum. An absorption spectrum begins with a source of pure white light. This hits a prism which spreads it out into a spectrum and the result shows on a screen as a bright band of colours. If you put this into a glass case and seal it to the outside world, nothing changes. Now if blow a gas into the tank, the atoms in the gas absorb different wavelengths (colours) of light. The result you see is a normal spectrum of colours, but with one or more dark lines across it. This is because the atoms in the gas through which the white light is shining are absorbing some or all of various colours in the spectrum. What those colours are is absolutely characteristic and definitive of that particular gas. This is a very powerful technique for identifying elements which are present only in trace amounts. An interesting light on this is that the element Helium was first discovered not on earth, but on the sun by some dark lines in the sun's spectrum which did not belong to any known element.
The opening of a dropper is narrow to control the flow rate of liquid being dispensed. This helps to accurately measure and transfer small volumes of liquid, making it useful in various applications such as scientific experiments and medical procedures.
The elements with the smallest atomic radii are found in the top of the P block of the periodic table. Helium (He) has the smallest atomic radius. Francium, on the other side of the periodic table (very bottom of the S block), has the largest atomic radius.
Cesium is used to make very accurate atomic clocks. The oscillation frequency of radiation emitted by cesium-133 atoms is used to define the second in the International System of Units (SI).
Yes, atomic bombs are real. They are powerful nuclear weapons that release energy through nuclear fission reactions, causing devastating destruction. The first atomic bombs were developed and used during World War II in 1945.
Narrow line sources are advantageous due to the simple fact that they add selectivity to the technique. If a very narrow line of a specific compound is emitted, there is a good chance that only the element that you are trying to determine will absorb that line and, therefore, you will avoid an erroneous signal due to absorption of radiation by concomitants in the atomizer, such as atoms of other elements or molecules. With that, you can also use a low or medium resolution monochromator, which will have the sole function of isolating the line of interest from other lines emitted by the source. Therefore, instruments can be simpler and, consequently, cheaper. That is basically it... The state-of-the-art in atomic absorption spectrometry, however, consists of instruments that use continuum sources, where a single source emits radiation in all range usually used in AAS. But modifications in the instrument were necessary for that, such as the use of a high-resolution monochromator and a CCD detector. Hope that helps...
Because it has a very narrow, flexible blade that makes curves easily
Atomic absorption spectroscopy is highly sensitive and can detect even trace amounts of elements in a sample. It is a widely-used technique in various industries such as environmental monitoring, pharmaceuticals, and food testing due to its accuracy and precision. Additionally, it is a simple and relatively inexpensive method compared to other analytical techniques.
The spectrum of light emitted from heated hydrogen has dark lines, caused by the absorption of a very narrow wavelength band of light. These dark lines always take the same location relative to each other. If all the lines in an object's spectrum are shifted by the same amount, towards the red end of the visible spectrum, then the light is "red shifted." The amount of the shift is often described with a number 'z', where z equals the shift in wavelength divided by the wavelength as originally emitted by the object.
broadNope, very narrow actually
nice
Chile
Yes, an AAA (atomic absorption spectroscopy) can be used to perform atomic emission spectroscopy by measuring the energy emitted by atoms. This technique involves heating a sample to generate a plasma, which then emits characteristic light that is analyzed to identify and quantify elements.
The South American nation of Chile .
Lines that are very descriptive
It is very narrow in places
Why are spectral lines narrow? Because the emitted photon must carry away the energy lost by the radiator. Except for tiny "recoil energy" this is the difference between the upper and lower energy levels of the well isolated emitting atom, for narrow lines. If the atom is not part of a very rarefied gas, then other "near by" atoms interacting even weakly with it cause, especially the upper level of an outer shell excited electron, to have slightly different energy levels, so measurements of the wave lengths, which require many photons, have an observed spread or line width. Even if the source is a very rarefied gas so the energy levels are not slightly shifted by other atoms, there is still a finite "natural width" to the line. This is caused by the uncertainty principle. I. e. unless the period in which the emission occurs is large, the photon energy can not be precise. - Billy T.