Electromagnets allow for greater control over the magnetic field strength, so the motor can be more easily controlled. By adjusting the current flowing through the electromagnet, the motor's speed and output power can be varied. This makes electromagnets more versatile in applications where the motor needs to operate under different conditions.
Permanent magnets are needed in an electric motor to create a constant magnetic field that interacts with the current flowing through the motor windings, resulting in motion. The magnets help to generate torque and provide a more efficient and controlled operation of the motor compared to electromagnets. With permanent magnets, the motor requires less power input to produce the required output.
An electric motor can be constructed without the use of magnets by using electromagnets instead. Electromagnets are created by passing an electric current through a coil of wire, which generates a magnetic field. This magnetic field can then interact with other magnetic fields to produce motion in the motor.
Electromagnets are sometimes more useful because they can be turned on and off at will. This feature allows them to do things that other permanent magnets cannot do. High speed mag-lev trains use this ability to their advantage to propel themselves down the rails.
The characteristic of magnets important in making a motor turn is the ability to create a magnetic field. In an electric motor, interactions between the magnetic fields of the permanent magnets and the electromagnets cause the motor to turn by generating a rotating magnetic field that drives the rotation of the motor's rotor.
The stator of an electric motor repels the permanent magnets with the help of an alternating current passing through the windings of the stator. This creates a rotating magnetic field that interacts with the permanent magnets on the rotor, causing it to turn and drive the motor.
They both are strong and are made of iron and steel.
Permanent magnets are needed in an electric motor to create a constant magnetic field that interacts with the current flowing through the motor windings, resulting in motion. The magnets help to generate torque and provide a more efficient and controlled operation of the motor compared to electromagnets. With permanent magnets, the motor requires less power input to produce the required output.
permanent magnets
Yes, an electric egg beater will have some kind of magnets in it. These may be permanent magnets, or may be electromagnets, but the motor in the appliance will have to have some kind of magnets in it to operate on electricity.
A refrigerator is not a magnet, however it does contain an electric motor, and within that motor are permanent magnets (as well as electromagnets).
An electric motor can be constructed without the use of magnets by using electromagnets instead. Electromagnets are created by passing an electric current through a coil of wire, which generates a magnetic field. This magnetic field can then interact with other magnetic fields to produce motion in the motor.
Electromagnets are sometimes more useful because they can be turned on and off at will. This feature allows them to do things that other permanent magnets cannot do. High speed mag-lev trains use this ability to their advantage to propel themselves down the rails.
The characteristic of magnets important in making a motor turn is the ability to create a magnetic field. In an electric motor, interactions between the magnetic fields of the permanent magnets and the electromagnets cause the motor to turn by generating a rotating magnetic field that drives the rotation of the motor's rotor.
The flux density of an electromagnet can be easily controlled. It's also easy and cheap to produce a large flux density with an electromagnet which is necessary for such large dc motors. Permanent magnets are generally expensive. For such a large motor,a very large permanent magnet will be needed for that motor which will not be ideal.AnswerElectromagnets are more powerful than temporary magnets, and -as pointed out above- their flux density can be controlled.
no
induction motor (in washer for example), compass, speaker
The stator of an electric motor repels the permanent magnets with the help of an alternating current passing through the windings of the stator. This creates a rotating magnetic field that interacts with the permanent magnets on the rotor, causing it to turn and drive the motor.