They don't. The basic physics behind the situation says that all objects fall together, regardless of their mass, weight, race, color, creed, national origin, or political affiliation.
In the reral world, especially on Earth, we occasionally see things falling at different rates.
No lighter things do not fall faster than heavier things. In a vacuum they will fall at the same speed. Normally the heavier thing will fall down faster because of its weight. Sometimes the lighter thing falls faster depending on the air resistance.
In a vacuum, all objects fall at the same rate regardless of weight due to gravity. However, in the presence of air resistance, heavier objects are less affected by air resistance than lighter objects, allowing them to fall faster. This is because air resistance is proportional to the surface area of the object, while weight is proportional to mass.
In a vacuum, all objects fall at the same rate regardless of their weight due to gravity. However, in real-world conditions with air resistance, lighter objects tend to fall slower than heavier objects because air resistance affects lighter objects more.
Air resistance
In a vacuum, all objects fall at the same rate regardless of mass due to gravity. This is known as the equivalence principle. However, in environments with air resistance, lighter objects may experience more air resistance and fall slower compared to heavier objects due to their surface area-to-mass ratio.
No lighter things do not fall faster than heavier things. In a vacuum they will fall at the same speed. Normally the heavier thing will fall down faster because of its weight. Sometimes the lighter thing falls faster depending on the air resistance.
They don't. All objects fall at the same rate of speed because of weight.
Faulse
Assuming the parachutes are the same size, then yes.
In a vacuum, all objects fall at the same rate regardless of weight due to gravity. However, in the presence of air resistance, heavier objects are less affected by air resistance than lighter objects, allowing them to fall faster. This is because air resistance is proportional to the surface area of the object, while weight is proportional to mass.
In a vacuum, all objects fall at the same rate regardless of their weight due to gravity. However, in real-world conditions with air resistance, lighter objects tend to fall slower than heavier objects because air resistance affects lighter objects more.
Air resistance
In a vacuum, all objects fall at the same rate regardless of mass due to gravity. This is known as the equivalence principle. However, in environments with air resistance, lighter objects may experience more air resistance and fall slower compared to heavier objects due to their surface area-to-mass ratio.
Galileo discovered that all objects fall at the same rate regardless of their weight, disproving the common belief at the time that heavier objects fall faster than lighter ones.
They don't. The basic physics behind the situation says that all objects fall together, regardless of their mass, weight, race, color, creed, national origin, or political affiliation. In the reral world, especially on Earth, we occasionally see things falling at different rates.
Galileo's experiment on falling objects showed that objects of different weights fall at the same rate, disproving the common belief at the time that heavier objects fall faster than lighter ones.
Without air resistance, heavier and lighter object fall at the same speed. More precisely, they accelerate at the same speed - near Earth's surface that would be 9.8 meters/second2. If air resistance is significant, heavier objects tend to have less air resistance, compared to their weight, so they will usually fall faster.