all objects fall at the same speed because i like ponies
In a vacuum, all objects fall at the same speed regardless of shape or weight due to gravity exerting the same force on them. However, in the presence of air resistance, objects with different shapes will fall at different speeds due to variations in air resistance.
No, objects of different weights fall at the same rate in a vacuum due to gravity. This is known as the principle of equivalence, demonstrated by Galileo's famous experiment. However, in the presence of air resistance, heavier objects can overcome it better and fall slightly faster than lighter objects.
In the absence of air, all objects fall with the same acceleration. That means that at the same time after the drop, all objects are moving at the same speed.
Objects fall with different accelerations and speeds due to differences in their mass and drag forces acting upon them. The acceleration of an object due to gravity is constant (9.8 m/s^2), but objects with greater mass experience greater gravitational force and thus fall faster. Additionally, objects with larger surface areas experience more drag, which can further affect their speed of descent.
Air resistance
In a vacuum, all objects fall at the same speed regardless of shape or weight due to gravity exerting the same force on them. However, in the presence of air resistance, objects with different shapes will fall at different speeds due to variations in air resistance.
No, objects of different weights fall at the same rate in a vacuum due to gravity. This is known as the principle of equivalence, demonstrated by Galileo's famous experiment. However, in the presence of air resistance, heavier objects can overcome it better and fall slightly faster than lighter objects.
In the absence of air, all objects fall with the same acceleration. That means that at the same time after the drop, all objects are moving at the same speed.
Objects fall with different accelerations and speeds due to differences in their mass and drag forces acting upon them. The acceleration of an object due to gravity is constant (9.8 m/s^2), but objects with greater mass experience greater gravitational force and thus fall faster. Additionally, objects with larger surface areas experience more drag, which can further affect their speed of descent.
Air resistance
That's called the "force of imagination".In the absence of air, all objects fall with the same acceleration. At equal times after the drop, all objectsare falling at the same speed.
yes, all the objects fall at same speed if we neglect air resistence but they appear to be falling at different speeds due to air resistence.
people on steds
Different objects can have different speeds; also, the same object can have one speed now, and a different speed later.
Who found (discovered) that objects of different mass and weight fall at the same rate
That depends. 10 lbs. of bricks will fall at the same speed as 10 lbs. of feathers. Meanwhile, a cinderblock will fall far faster than a single feather. If two things are the same weight, they will usually fall at the same speed. If two things are different weights, they will fall at different speeds. ^ This only takes effect when wind resistance is NOT added.
Objects fall through air at a different rate due to the amount of air resistance. Feathers or dandelion "parachutes" fall at a much slower pace than coins. However there is an experiment called "The coin and the feather". A glass tube about 6cm in diameter has a penny and a penny placed inside before the air is evacuated using a vacuum pump. The tube is then sealed. If the tube is held vertically the coin and feather are both at the bottom. If the tube is then swiftly inverted, so that what was bottom becomes top, the coin and feather are seen to fall at the same rate. Unbelievable unless you actually see it.