Using an analogy is the best way to explain this. Think of electrical current as cars on a road. The cars all want to get to their destination (which in a complete circuit is just to go in a loop) in the shortest time possible. As the road get's shorter the time it takes for the car to reach it's destination decreases.
A long and thin wire made of a material with high resistivity and low conductivity would have the greatest electrical resistance. The resistance of a wire is directly proportional to its length and inversely proportional to its cross-sectional area, so a long, thin wire will have a greater resistance compared to a shorter, thicker wire.
The electrical resistance of a body is affected by the material it is made of, its length, cross-sectional area, and temperature. Materials with high resistivity, longer lengths, smaller cross-sectional areas, and higher temperatures will have higher electrical resistance.
A thin and long wire made of a material with high resistivity, such as nichrome or tungsten, would have the greatest electrical resistance.
Friction is the force that will decrease if the surface of the ramp is made smoother. Smooth surfaces reduce friction by allowing objects to slide more easily with less resistance.
The resistance of an electrical conductor is primarily affected by its length, cross-sectional area, and the material it is made of. Longer conductors have higher resistance, while conductors with larger cross-sectional areas have lower resistance. Different materials have different resistivities, which also affect resistance.
Ways to reduce electrical resistance: increase the diameter of the conductor, decrease or increase the temperature of conductor (depending on its thermal characteristics), decrease the length of the conductor. A change in the material out of which the conductor is made can decrease resistance, too. And there is the phenomenon of superconductivity. In a simple circuit the resistance can be lowered by adding resistors in parallel. The total circuit resistance will then decrease. You can also reduce resistance by substituting resistors of lower value, or by adjusting a potentiometer, or pot, to a lower value.
If wire delivering a certain amount of current is made narrower, the resistance of the wire will increase. This will limit current, and the wire will warm up some. If the wire is made shorter, resistance will decrease. The electrical codes have well published limits on the amount of current different types of wire can carry.
A long and thin wire made of a material with high resistivity and low conductivity would have the greatest electrical resistance. The resistance of a wire is directly proportional to its length and inversely proportional to its cross-sectional area, so a long, thin wire will have a greater resistance compared to a shorter, thicker wire.
electrical resistance
The electrical resistance of a body is affected by the material it is made of, its length, cross-sectional area, and temperature. Materials with high resistivity, longer lengths, smaller cross-sectional areas, and higher temperatures will have higher electrical resistance.
It's dependent on the wire's composition. That is, what material it is made of. <<>> The electrical resistance in a wire depends on the wire's length and cross sectional area.
Electric current as we usually describe it is the flow of electrons. Current is caused to flow by voltage, which can be looked at as "electrical pressure" that forces electrons to move. Currents can be made smaller or larger by decreasing the voltage across a fixed amount of resistance. As resistance is the quality of "resisting" or "limiting" current flow, we can change resistance to change current. For a give voltage, if we increase the resistance, we can make the current smaller, and if we decrease it, we can make current larger. In electronics, voltage equals current times resistance. E = I x R Also true is that current is equal to voltage divided by resistance. I = E/R As current equals volts divided by resistance, if we change one of them without changing the other, current will change. And in increase in voltage (with no change to resistance) will cause current to go up. The opposite is also true. Also, if we increase resistance (with no change in voltage), current will go down. And the opposite is true here, too.
A thin and long wire made of a material with high resistivity, such as nichrome or tungsten, would have the greatest electrical resistance.
Nichrome has a high electrical resistivity.
Friction is the force that will decrease if the surface of the ramp is made smoother. Smooth surfaces reduce friction by allowing objects to slide more easily with less resistance.
The resistance of an electrical conductor is primarily affected by its length, cross-sectional area, and the material it is made of. Longer conductors have higher resistance, while conductors with larger cross-sectional areas have lower resistance. Different materials have different resistivities, which also affect resistance.
High voltage transmission line insulator are also made of glass.