The nuclei of atoms include one or more protons, which are strongly charged. It is necessary to use heat or kinetic energy, or some other energy, to overcome the charge.
Extremely high pressure is required to initiate fusion in the stars. This pressure overcomes the normal repulsion between protons, allowing protons of hydrogen to get close enough for the strong atomic force to take over and change the force to an attractive force, forming helium.Not stated, but answered for completeness sake... Extremely high temperature is also required in order to strip the hydrogen nuclei of their electrons, forming an ionized plasma, in order to get past the additional repulsion that the electron cloud would represent.
Extremely high pressure is required for fusion to occur because the electromagnetic force would otherwise cause the protons in the two nuclei to repel each other, and you need to overcome that repulsive force, and allow the stronger1 binding energy to take over.Not asked, but answered for completeness; you also need extremely high temperature because you need to strip the electron clouds away, i.e. to fully ionize the nuclei, to eliminate interference from the electrons as well.-------------------------------------------------------------------------------------------------1 The binding energy is stronger, but only at closer distances. Outside the radius of the nucleus, the electromagnetic force is more powerful, hence the need for pressure. Once inside the radius of the nucleus, at least for elements smaller than lead, the binding energy is more powerful.
A thermonuclear burst occurs under conditions of extremely high temperature and pressure, causing the fusion of atomic nuclei and resulting in a powerful release of energy.
Cesium atoms are commonly used in making atomic clocks, as they are extremely consistent in their oscillation frequencies. By measuring the vibrations of cesium atoms, atomic clocks can maintain extremely accurate timekeeping, losing only about one second every 300 years.
Particle accelerators are devices used to move atomic nuclei at extremely high speeds. These accelerators use electromagnetic fields to propel charged particles such as protons or electrons to nearly the speed of light for research in physics, medicine, and industry.
Extremely high pressure is required to initiate fusion in the stars. This pressure overcomes the normal repulsion between protons, allowing protons of hydrogen to get close enough for the strong atomic force to take over and change the force to an attractive force, forming helium.Not stated, but answered for completeness sake... Extremely high temperature is also required in order to strip the hydrogen nuclei of their electrons, forming an ionized plasma, in order to get past the additional repulsion that the electron cloud would represent.
Extremely high pressure is required to initiate fusion in the stars. This pressure overcomes the normal repulsion between protons, allowing protons of hydrogen to get close enough for the strong atomic force to take over and change the force to an attractive force, forming helium.Not stated, but answered for completeness sake... Extremely high temperature is also required in order to strip the hydrogen nuclei of their electrons, forming an ionized plasma, in order to get past the additional repulsion that the electron cloud would represent.
Extremely high pressure is required for fusion to occur because the electromagnetic force would otherwise cause the protons in the two nuclei to repel each other, and you need to overcome that repulsive force, and allow the stronger1 binding energy to take over.Not asked, but answered for completeness; you also need extremely high temperature because you need to strip the electron clouds away, i.e. to fully ionize the nuclei, to eliminate interference from the electrons as well.-------------------------------------------------------------------------------------------------1 The binding energy is stronger, but only at closer distances. Outside the radius of the nucleus, the electromagnetic force is more powerful, hence the need for pressure. Once inside the radius of the nucleus, at least for elements smaller than lead, the binding energy is more powerful.
The atomic model cannot be extremely accurate.
No, atomic nuclei is not required for a chemical reaction.
The metal cautions easily slide past one another.
A thermonuclear burst occurs under conditions of extremely high temperature and pressure, causing the fusion of atomic nuclei and resulting in a powerful release of energy.
If you mean "atomic" as in the Atomic Bomb, then the word "nuclear" could be substituted = Nuclear Bomb.
A very unlikely type of decay.Plutonium is found as isotopes with atomic weights in the range 238 to 244. Your equation seems to involve plutonium with another 39-78 neutrons! Making it an extremely unlikely (if not impossible) isotope.A very unlikely type of decay.Plutonium is found as isotopes with atomic weights in the range 238 to 244. Your equation seems to involve plutonium with another 39-78 neutrons! Making it an extremely unlikely (if not impossible) isotope.A very unlikely type of decay.Plutonium is found as isotopes with atomic weights in the range 238 to 244. Your equation seems to involve plutonium with another 39-78 neutrons! Making it an extremely unlikely (if not impossible) isotope.A very unlikely type of decay.Plutonium is found as isotopes with atomic weights in the range 238 to 244. Your equation seems to involve plutonium with another 39-78 neutrons! Making it an extremely unlikely (if not impossible) isotope.
Of the 3 atomic particles protons, neutrons and electrons, electrons have the smallest mass.
Isotopes - that same element with a different atomic weight.
Atomic number is the equivalent of the number of protons in an atomic nucleus.