The bigger momentum an object has, the harder it is to stop it. Momentum is defined as velocity times mass. An object with really big mass which moves really slowly (like a car moving slowly) is also hard to stop.
It is hard to stop fast-moving cars because of their momentum. Momentum is the product of an object's mass and velocity, and the greater the momentum, the more force is required to change the object's speed or direction. Fast-moving cars have high momentum, making it difficult for brakes to overcome that momentum and bring the car to a stop quickly.
The measurement of how hard it is to slow down and stop an object is called inertia. Inertia is the tendency of an object to resist changes in its state of motion, whether it is at rest or moving. The greater the mass of an object, the greater its inertia.
The force that makes an object stop moving is typically friction. When an object is in motion, the force of friction between the object and the surface it is moving on acts in the opposite direction of the object's motion, eventually bringing the object to a stop.
To drive onto a moving object (as, for example, up a ramp onto a moving trailer), you must be going faster than the object to move forward up the ramp, but when you come to a stop relative to the object, you will be moving with the object, so must be moving at the same speed. You must, in fact, decelerate to a stop on the object, or your faster approach speed would carry you through and beyond it.
Friction is a force that can cause an object to stop moving. When an object slides on a surface, the friction between the object and the surface will slow it down until it comes to a stop.
It is hard to stop fast-moving cars because of their momentum. Momentum is the product of an object's mass and velocity, and the greater the momentum, the more force is required to change the object's speed or direction. Fast-moving cars have high momentum, making it difficult for brakes to overcome that momentum and bring the car to a stop quickly.
Momentum.
well think, because its going very fast and the wight makes it slower to stop fast.
The measurement of how hard it is to slow down and stop an object is called inertia. Inertia is the tendency of an object to resist changes in its state of motion, whether it is at rest or moving. The greater the mass of an object, the greater its inertia.
The force that makes an object stop moving is typically friction. When an object is in motion, the force of friction between the object and the surface it is moving on acts in the opposite direction of the object's motion, eventually bringing the object to a stop.
Stop
You have to blow on him hard when he stops moving stop blowing and then blow again fast or he will get away.
To drive onto a moving object (as, for example, up a ramp onto a moving trailer), you must be going faster than the object to move forward up the ramp, but when you come to a stop relative to the object, you will be moving with the object, so must be moving at the same speed. You must, in fact, decelerate to a stop on the object, or your faster approach speed would carry you through and beyond it.
When there is no stop time for a moving object, it will continue to move indefinitely without slowing down or coming to a stop.
Friction is a force that can cause an object to stop moving. When an object slides on a surface, the friction between the object and the surface will slow it down until it comes to a stop.
The momentum of a moving object is a characteristic related to its mass and velocity. Momentum is the product of an object's mass and its velocity, and it measures the quantity of motion an object possesses.
The equation is F = M A, where F is the Force required to stop the object, M is the object's Mass, and A is its Acceleration. Note that its acceleration in this case is the rate at which you are DE-ACCELERATING the object to stop it.