Keeping the amplitude of the swinging pendulum small is important to maintain the regularity and predictability of its motion. Large amplitudes can introduce non-linearities that impact the period of oscillation and make the pendulum less reliable for timekeeping or measurement purposes. Additionally, larger amplitudes can result in higher energy loss due to air resistance or friction, leading to dampening of the pendulum's motion.
Small: This is to ensure that the motion of the pendulum mostly stays along one direction, i.e. it is swinging back and forth as opposed to rotating or moving erratically. Only when the pendulum is moving in this manner can you say that it follows SHM - Simple Harmonic Motion (If that is the aim of the experiment)
A pendulum oscillating with a larger amplitude has a longer period than a pendulum oscillating with a smaller amplitude. This is due to the restoring force of gravity that acts on the pendulum, causing it to take longer to swing back and forth with larger swings.
It is preferable to keep the amplitude of a simple pendulum small because larger amplitudes can lead to nonlinear behavior and make the system harder to analyze. Keeping the amplitude small ensures that the motion remains approximately harmonic, simplifying calculations and predictions.
The motion of the simple pendulum will be in simple harmonic if it is in oscillation.
The change of amplitude affects the time of one cycle of a pendulum if the amplitude is big. In such a case, time increases as amplitude increases. In the case of a small amplitude, the time is very slightly affected by amplitude and is considered negligible.
Assuming an idealised pendulum with a small amplitude, both are examples of simple harmonic motion. That is, the second derivative of the curve is directly proportional to its displacement but in the opposite direction. If the amplitude (swing) of the pendulum is large or if the majority of its mass is not oi the "blob" the relationship is only approximate.
The period or frequency of the pendulum
Small: This is to ensure that the motion of the pendulum mostly stays along one direction, i.e. it is swinging back and forth as opposed to rotating or moving erratically. Only when the pendulum is moving in this manner can you say that it follows SHM - Simple Harmonic Motion (If that is the aim of the experiment)
A pendulum oscillating with a larger amplitude has a longer period than a pendulum oscillating with a smaller amplitude. This is due to the restoring force of gravity that acts on the pendulum, causing it to take longer to swing back and forth with larger swings.
It is preferable to keep the amplitude of a simple pendulum small because larger amplitudes can lead to nonlinear behavior and make the system harder to analyze. Keeping the amplitude small ensures that the motion remains approximately harmonic, simplifying calculations and predictions.
The motion of the simple pendulum will be in simple harmonic if it is in oscillation.
The change of amplitude affects the time of one cycle of a pendulum if the amplitude is big. In such a case, time increases as amplitude increases. In the case of a small amplitude, the time is very slightly affected by amplitude and is considered negligible.
The period of a pendulum is (sort of) independent of the amplitude. This is technically true for very small, "infinitesimal" swings. In this range, amplitude does not affect period. For larger swings, however, a circular error is introduced, but it is possible to compensate with various designs. See the Related Link below for further information.
The time period of a simple pendulum is not affected by the mass of the bob, as long as the amplitude of the swing remains small. So, doubling the mass of the bob will not change the time period of the pendulum.
The ideal model of a simple pendulum assumes the pendulum mass is concentrated at a single point, the string or rod is massless and frictionless, and the pendulum moves in a vacuum with no air resistance. Additionally, it assumes small amplitude oscillations, and the only force acting on the pendulum is gravity.
In an ideal pendulum, the only factors that affect the period of a pendulum are its length and the acceleration due to gravity. The latter, although often taken to be constant, can vary by as much as 5% between sites. In a real pendulum, the amplitude will also have an effect; but if the amplitude is relatively small, this can safely be ignored.
Hardly at all, at small displacements or amplitudes. At larger displacements (larger angles), the period will get somewhat longer.